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ness between two objects and are extensively applied in decision-making. In this
paper, we propose new similarity measures based on trigonometric functions and
their weighted representations. Additionally, we investigate the properties these
measures satisfy and demonstrate their effectiveness through several numerical
examples. Lastly, we apply these similarity measures to decision-making prob-
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1. Introduction

Similarity measure is an important concept in probability theory, as it serves to evaluate the degree
of resemblance between two variables or samples. The similarity between two objects represents a
numerical indication of how much they resemble each other. As a result, objects that are more alike
exhibit higher levels of similarity. The probability theory-based similarity measure method excels in
handling specific information scenarios. Nevertheless, in practical scenarios, decision-makers often
encounter uncertain information, rendering these methods inadequate and unable to yield precise
outcomes when confronted with such uncertainties.
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Up to now, various theories have been developed, including fuzzy sets [24, 27, 35], evidence the-
ory [20, 22, 23], and neutrosophic sets [25, 26, 30]. The introduction of fuzzy set theory by [40]
marked a significant milestone in this field, forming the basis for fuzzy decision-making. Building on
this, Atanassov [7] proposed intuitionistic fuzzy sets (IFSs), which include both membership and non-
membership degrees, restricting their combined total to 1 or less. Since then, IFSs have been applied
across a range of decision-making areas [11, 14, 29, 41]. However, this constraint limits their effective-
ness in practical problem-solving. To address the limitation, Yager [37] introduced Pythagorean fuzzy
sets (PFSs), which ensure that the sum of the squares of the membership and non-membership de-
grees is no greater than 1. Due to their advantages, PFSs have attracted significant research interest
and have been applied in various decision-making contexts [6, 13, 16, 21]. Despite these advancements,
PFSs still offer opportunities for further exploration and refinement.

Over the years, numerous applications of traditional FSs theory models have been explored. How-
ever, due to their reliance on real-valued membership grades, these models were unable to effectively
represent two-dimensional vague data. A significant advancement in FSs theory came with the intro-
duction of complex fuzzy sets (CFSs) in [32], which expanded the framework to include complex-valued
membership, allowing for the representation of phase information and multidimensional attributes.
Building on this, the literature [4] proposed complex intuitionistic fuzzy sets (CIFSs), incorporating two
complex functions that represent membership and non-membership degrees. Following this devel-
opment, extensive research has been conducted on CIFSs [3, 10, 19, 28, 33].

However, CIFSs face similar limitation to IFSs, leading [34] to extend CIFSs into complex Pythagorean
fuzzy sets (CPFSs), which have since attracted considerable attention[1, 8, 15]. For instance, the litera-
ture [31] introduced new complex Pythagorean fuzzy Einstein weighted geometric and hybrid geomet-
ric operators, aimed at mitigating the transmission rate of COVID-19. Furthermore, Wu et al. [36] high-
lighted that the distance measure proposed in [34] does not satisfy the axiomatic criteria for CPFSs,
prompting the development of novel distance measures based on CPFSs. Liu et al. [18] designed a new
class of Archimedean aggregation operators tailored for CPFSs to improve decision-making processes.
Hezam et al. [12] introduced complex Pythagorean fuzzy geometric aggregation operators to address
multicriteria group decision-making problems. Additionally, Liu et al. [17] developed Dombi aggrega-
tion operators based on CPFSs information, applying them to solve green supply chain management
issues within a complex Pythagorean fuzzy context.

Despite many research efforts and notable progress within CPFSs, there remains a gap in the devel-
opment of similarity measures for CPFSs. Some existing similarity measures may lead to counterintu-
itive results for various reasons. Trigonometric functions, which are fundamental mathematical tools,
have been widely applied in the study of similarity measures for IFSs and PFSs [5, 38, 39]. Recently, Ali
[2] introduced trigonometric function-based similarity measures for CFSs. To capture more uncertain
information and expand the range of applications, we propose a set of similarity measures for CPFSs
based on trigonometric functions, along with their weighted forms. Owing to the inherent characteris-
tics of the trigonometric functions, our proposed measures effectively identify the difference between
CPFSs.

The main contributions are summarized below:

1. We introduce a novel set of similarity measures based on trigonometric functions, specifically
incorporating sine, cosine, tangent and cotangent functions

2. We show that the proposed measure satisfies the necessary properties and provide numerical
examples to support the validity of the measures.

3. We apply these similarity measures to various decision-making problems to showcase their prac-
tical utility.
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This article is organized as follows: In section 2, we briefly introduce the basic concepts of CFS,CIFS,CPFS.

We introduce some existing similarity measures and propose the trigonometric similarity measures
and weighted similarity measures in section 3. Then, in section 4, we verify the properties that our
presented similarity measures hold through some numerical examples. In section 5, we apply these
measures to pattern recognition and medical diagnosis. Section 6 concludes the papers.

2. Preliminary

This section will provide some basic concept about CFS, CIFS and CPFS.

2.1 Complex fuzzy set

Definition 1 [32] Assume that ® is a finite universe of discourse (UOD). The complex fuzzy set (CFS) C
in ® is defined below:

C = {(Mc(9))lp € @} (1)
where M¢ : ® — {y : y € C,|y| < 1} is the complex-valued membership degree, which is

denoted as M¢ = Z¢(¢) - ¥ #c@ where 0 < Z¢(4) < Land 0 < #(¢) < 1.

2.2 Complex intuitionistic fuzzy set

Definition 2 [4] Assume that ® is a finite UOD. The complex intuitionistic fuzzy set (CIFS) Z in ® is
defined below:

T = {(Mz(8), Nz(9))|¢ € ®} (2)
where Mz,N7 : ® — {y : y € C,|y| < 1} are the complex-valued membership and non-

membership degrees, which are denoted as M; = 25(¢) - X7 #1200 Ny = % (¢) - 27220,
where ‘%/IM))’ %(@ € [0,1] and %ﬂ@ + %) < 1. Additionally, W, 4y, War () € [0,1] and
W) + Wansy < 1. Moreover, the hesitancy degree is defined as Hz(¢) = H#7(¢) - ™77,
where 77(¢) =1 — 27(¢) — 92(8) and Wiy ) = 1 — War(s) — V(o)

2.3 Complex pythagorean fuzzy set

Definition 3 [34] Assume that ® is a finite UOD. The complex Pythagorean fuzzy set (CPFS) P in ® is
defined below:

P = {{(Mp(0), Ne(9))|¢ € O} (3)
where Mp, Np : & — {y : y € C,|y| < 1} are the complex-valued membership and non-

membership degrees, which are denoted as Mp = Zp(¢) - ™% Np = Bfp(p) - ™7 %),

where 2p(4), Yop) € [0,1] and 2

2+ %2, < 1. Additionally, Wy, ), Wars) € [0.1] and W3, ., +

%}P(@ < 1. Moreover, the hesitancy degree is defined as Hp(¢) = #5(¢)-e*™” 7@, where #5(p) =

VI=22(0) = D) and Vs = \[1 = W)= Wi oy

3. Similarity Measures for CPFSs

In this section, we first review some existing similarity measures, then we deﬁne some novel sim-
ilarity measures between two CPFSs Py = {(¢;, 25, (¢1) - ) g (4,) e P00 gy € B

and Py = {{¢i, 2o, () - €7 72290 Do () - 7240 |6, € B} on UOD .

158



3.1 Existing Similarity Measures

Definition 4 Similarity measures based on the distance measures for CPFSs proposed by Wu et al. [36].

(128, (6:) — 25, (00)] + |FE, (60) — D (00)| + |5, (1) — 5, (00)])

e

+5 max (|2, (61) — 27, (8], 196, (61) — D, (90, |5, (6:) — Hiy (1))

1 m
Swu(P1,Pr) =1—— Z 1
2T (3, 00— W 001+ 9B, (60— W, (001 + Wi (00— W, (90))

1
ma (193, (61) = W3, (D), W3, (60) = W3 (60|, W2, (60) — W2 (00)]) |

(T3
(4)

m

Sosc(P P)=1—LZ |25, (i) — 25, (00)| + |25 (0) — Do ()| + |75 (i) — A, (1)
sic(P1, Py dm S \+ W3, (6) = W, (00) + W3, (6:) = W3, (00| + Wi (60) — Wi (64)]
(5)

L 122 (60) — 22(60)| + 192 (60) — B2 ()
Sirx (P, o) =1 RZ<+% () - V/%P2<¢i>|+|%;m<¢i>—%@M) “”

. L max{|3&”ﬁ(¢z) 35/1@22(@”7 |%21(¢z) - %22(@”}
SalPrPo) =1-500 <+ masc{ [ W2, (65) — W (00, W3 (6n) — Wi, <¢m}> 7)

S B =1 L3 max{] 22 (61) — 232 (60)]. 1942 (&) — D2 (6)]. | A2 (0) — A2 (61)]}
revhre 2m S \+max{|[W3, (&) = #3, (6,173, (6) = W3, (00)l, W3 (60) = Wi (9)]}

(8)

(L (1= 22(6:), 1= 22(60)) + L (% (), 2 ()

DN | —

(9)

[ 1 Zm: \/
0% 2m 4 +\/% <L (1 — 7/502@1 (¢i),1 — ijpz (@))) + L (%}Pl (¢), %}Pl (@))

where L(a, §) = alog, 25 + flog, 25 aw

3.2 Proposed Similarity Measures for CPFSs

In this section, we will introduce some similarity measures based on trigonometric functions.

Definition 5 For two CPFSs IP; and Py, the similarity measures (S, S2, ) based on sine function are
defined as:
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| 25, (6:) — 25, (00)| + |25, (64) — %2( i)l

SL (P, Py) = 1 — %Zsm R, 00 = A 00+ 1, (00 = 3,600l | | o
A (60) — A2 (D) + W2, (60) — m (64)]
o |22 (61) — 2260 V|9 (00) — D2 ()]

S2 (P, Py) =1— — Zsin g V|W§fpl (¢s) — %%PQ (¢0)| vV |%§Pl (¢) — Wo}ﬂb(@” (11)
VISR (65) = HE(6:)| V(W2 (60) = WE, (60)]

Theorem 1 Considering three CPFSs P, , Py and P35, S&

sin

(k = 1,2) holds the following properties:
1. Sk (P, Py) = Sk (P, Py)

sin sin

2. SE (P, Py) = 1iffP, =P,

sin

3. 0< S*k

sin

(Py,Py) <1
4. IfPl - PQ - Pg, then S

sin

(Py,P5) < Sk

sin

(Pl, PQ) and S (Pl, P3) < S

sin sin

(P2, P3)

Proof1 S!

sin

as an example, for two CPFSs IP; and Py, we have:

o |25 (00) — X (00)| + |, (1) — D5 ()]

Siin(P1,P2) = 1= — 3 sin HA G (00) = W5, ()l + W, (6) — % (1)
= HIE (0i) — (00| + W (00) = Wi (60)]

o | 25 (0:) — 2 ()| + 195 (90) — F5it ()]

Stn(P2,P) =1—— "sin HA G, (00) = W, (D)l + W, (63) — Wi, ()]
Wi, (60)]

m <
i1 +H A (0:) — A (0)] + | W e, (1) — o

’L

ool

ool 3

Obviously,

122.(61) — 22(60)] = | 232(6:) — 22(6))]
192 (60) — BR(60)| = |92 (61) — D (6)]

W (60) = W3 (60)] = W3 (60 — W3 (60)]
W3 (60) = W3, (0] = W3, (6:) — W3 (60)
2 (0) — HD)| = | A (61) — A2 ()]
W3 (60) = W, (60| = W (61) — W (64)]

(Py,Py) =S

sin

Thus, we can obtain S

sin

(P2, Py)
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Proof 2 S! as an example, for two CPFSs IP; and P, assume IP; = IP,, then we have:

L5 (0i) = 25 (00), D5 (0) = Do (90), W3, (05) = W3, (),
Wiy (0) = Wi, (00), 52 (6i) = 5 (0:) W, (03) = Wz, (4)
=25 (0:) — 25, (03)] = 0,25 (6:) — %, (63)| = 0,
W5, (0) = W3, (00| = 0.1W5, (¢5) — Wi (¢3)] =0
|75 (0i) — A (i) = 0, (W (i) = Woge (6)] =0
| 2%, (00) — 23, (00)| + | %5 (i) — P (63)]

(JFW%H (6:) = W5, (D) + Wi, (0) — Wi, (Cbz))

+ A (61) — «%'ﬁ(@)\ + \W%ﬂp <Z5z Wyﬁ» (¢4)]

—sin | T (4173, (00 - m <¢z>r + A <¢z> <¢z>\ 9
A (60) — AL + Wy (61) %wm

Hence, we can obtain:

| 25 (¢0) — 25, ()| + |95 (1) — %g(@ﬂ
SL (P, Py) =1 — —Zsm ~ 175, (0) = W5, (00| + W, (60) — Wi, ()]
+|%21(¢z) %22(9251)‘ + |szﬁml (¢) — 7/%2 (¢4)]

Considering SL (P, IPy) = 1, for any ¢; € ®, we have:

sin

. | 25 (¢5) — 25, ()| + |25 (1) — D5 ()]
B = 1= LS | T (412, 00 - 73, 00+ 193, 00 - 73, 001 | | =
= +| A () — A (00)] + V/;prl (¢) — W;fﬁmz (¢4)]

Therefore, we can obtain:

|22(60) — 22(60)] = 0,12 (61) — B2 (6)| = 0
W3, (60) = W3, (00)] = 0,193 () — #3, (60)] = 0
A (01) — A (D0)] = 0,193 (65) — W (60)] = 0
= 22 (60) = D260, 5L (65) = BRG), W3 (&) = W (90),
W3 (&) = W3, (0,2 (60) = A6, Wy (60) = W (60)

Thus, we can prove that S|

(Py,Py) = 1iff P, = P,
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Proof 3 S. asan example, for two CPFSs IP; and IP,, we can obtain:

sin

0 < 25 (00), 25 (90), D, (03), D (00), Wi (00), Wi, (00), Wiy (3), Wi, (¢3) < 1

|25 (6:) — 2 (00)| + | %52 (1) — %22( i)l

= 0< | 175 (0) = W5, (o) + Wi (6) = Wi, ()] | <1

A (90) — A (00)| + W e (03) — W;@Z(@N

| 25, (00) — 23, (00)| + | %5 (i) — 5, (63)]

= 0 < sin g HW G, (0) = W, ()l + Wi, (6:) — Wi, ()]

HAE (0i) — A5 (D) + W (00) — Wi (60)]

. _ |25, (00) — 2 (00| + | %, (61) — Dhea ()]

=0<1-— > sin 3 HA G, (60) = W5, ()l + W, (60) = Wi (0] | | <1

= H A (91) — A (D) + W (00) — W, (60)]

<1

Therefore, we can prove 0 < SL

sin

(P1,P) < 1.
Proof 4 S. asanexample, for three CPFSs Py, Py, P35, considering P; C P, C IP5, then we have:

27, (61) < 2y (d) < 25, (1), Wjﬁ) (0)) <5, (60) S W5, (¢0)
@2 (@) > %22 (sz) > %23 (@) % (@) > %%P (sz) W@z[p>3 (@)

and

| 252 (00) — X (0)| < |25 (1) — 2 ()]
‘Wg%ﬂml (¢i) — Wéﬁb(@)\ < ‘7/32@1 (¢i) — 7/32{@3(@)‘
|96 (6) — D (00)| < 195 (1) — P (9)]

35, (6) = W, (00)| < [, (6:) = Wi, ()]

Hence, we can obtain:

- |'%IF’21(¢2')_‘%Pi(¢i)|+|%21(¢i)_g (01)]
SL (P, P3) =1~ — Zsin Hyﬂgfpl (¢) — 7/32@2(@)‘ + ‘W@Qﬁbl (¢) — ( )|
A (00) — A0 + W3, (6) %@ (6)
i)
)
)

(2

L 1260 2RI+ @%(@) %( )
<1- LS e | T+, 00 - 3 (001 + 192, (00— #3, (@)
‘ A (6) — A2 (60)| + W2 (6) — m ()|
= S5in(P1, o)
We can get SL, (P, P3) < SL (Py,P3) in the same way. Therefore,we can prove that if P; C Py C
Ps, then SL, (P1,P3) < SL (Py,Py) and S, (P1,P3) < SL. (Py, P3).

Definition 6 For two CPFSs P, and P, , the similarity measures (.S L 82 ) between CPFSs IP; and P,

cos’? CcoSs

based on cosine function are defined as:
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m | 25 (¢0) — 25, ()| + |25 () — D5 ()]

Spos(P1,Py) = 7}1 > cos g W 00 = Voo + V60 = Py 00 (12)
AR (6 — A0 + W (6) — W2 (60)
|25 (00) — 2 ()| V 15 () — P ()
o s(P1,Py) = Z cos | 5 VIV 500 = P oyl V1P as 60 = Wy 60 (13)
VIAG(6:) — (8| V Wi (0) — W, (1)

Theorem 2 Considering three CPFSs P, Py and PP, SC’“OS(I{: = 1, 2) holds the following properties:
1. Sh (P, Py) = Sk (IPy, IPy)
2. S (Pl,Pg):liﬁP1:P2

cos

3.0< Sk

cos

(P,Py) <1
4. IfP; C Py C P, then Sk

cos

(P, P3) < SF

cos

(Py,P,) and S*

CcoS

(P1,P3) < SE, (P2, Ps)
52

tan

Definition 7 For two CPFSs IP; and P, , the similarity measures (.S !

P ) between CPFSs IP; and P,
based on tangent function are defined as:

m |25 (6i) — 25 (00)| + |95 (0) — % (6)]
Sy (P1,Py) =1 — %Z tan 16 H 5 60 = Wagon) + Va0 = iy 00) (1)
A (80) — AZO + W (60) — W, (6]
o _ |325P21(¢¢) - %ﬁ(@ﬂ v |@2€P21(¢i) - %;22(@)!
San(Pr,P2) =1 = — tan | - | Vo, 60 = Vany00l Y P ai,00 = Vg0
- VAR (8 — ARGV Wiy (60) — W (80

Theorem 3 Considering three CPFSs Py, P, and IP5, S¥

(15)

(k = 1,2) holds the following properties:

tan
1. S, (P1, Py) = Sf, (Po, Py)
2. Stan(]P)h]P)z) =1iffPP; =Py

3.0< St’fzn(PhP?) <1
4. ’fPl - ]PQ - Pg, then Sk

tan

(P, P3) < Sk

tan

(Pl, PQ) and Sk

tan

(P, P5) < Sk

tan
Definition 8 For two CPFSs P, and P , the similarity measures (S2,, S2,
based on cotangent function are defined as:

(P2, P3)

) between CPFSs P; and P

Lo o ’%ﬁ(d)i) - %&%(@)’ + ’@21921(@) - ‘@/1152(@)\
Se(Pr,P2) = — > Jcot | 2o | F 5,00 = PV + 1oy 60 = V00 (16)
= HAR (6 - A0+ IWE (6~ WE, (6)
Lo o |{P21(¢z’) - %@22(@)’ % |@2IP’21(¢1'> - %;i(@”
Seot(P1, P) = — —> cot | 2+ | Va0 = VooV Wi 60 = Vool (17)
= VI (05) — ()| V (W (i) = Woge (4)]
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Theorem 4 Considering three CPFSs P, P, and PP, Sfot
1 S (Pl,Pg) = S (IEDQ,IEDl)

cot cot

(k = 1,2) holds the following properties:

2. Sk

cot

(P1,P,) = 1iff P, = P,
3. 0< S5 (P,Py) <1
4. If Py C Py C Pg, then Sk

cot

(Py,P5) < S*

cot

(Pl, Pg) and S

cot

(Py,P5) < S*

cot (IP)Z? IED3)
3.3 Proposed Weighted Similarity Measures for CPFSs

In this section, we will further introduce the weighted similarity measures based on sine, cosine,
tangent and cotangent functions.

Definition 9 For two CPFSs P, and Py, the weighted similarity measures based on sine, cosine, tangent
and cotangent functions are defined as:

| 25 (1) — 25, (0i)| + |95 (0:) — e (94)]

Spsin(P1,Py) =1 = " w;sin g H e 00 = Yool T 155 00 = Py (18)
A (60) — AZG) + W (60) — W, (60
. |25 (03) — L (D) V|5 (i) — D5 ()]
Sg,sm(PhPﬁ =1~ Zwi sin g V‘W;Xpl (6s) — W}%(@ v ]7/52[?1 - W}P ¢>Z (19)
= VIS (¢i) — A (03] V V/yffp (&%) W?ﬁp2

| 25, (60) — 25, (00)| + |25, (61) — D (1)

Sheos(P1,P2) = sz cos g H G 00 = Wy 60) T W 00 — Py 60 (20)
A (00) — A5, (00| + W g (01) = Wi, (9]
| 252 (60) — 22 (00)| V | (61) — 5 (¢0)]

52 os(P1,Py) = Zw, oS g \/W/épl (1) W%p (@) Vv |7/}P () 7/%2 (1) (21)

\/|%21 (¢Z) P2(¢z)| vV |W%]p (Qsz W)ﬁp sz
|‘5/VIP21(¢Z) %2(@” + |%1 Cbz %2 ¢z)|

S&;tan(PbPQ) =1- Zwi tan 116 +|7%925P1 (#4) WWPQ (¢) + |W%P1 W%P (¢i) (22)
= H A (90) — A (D) + W e (03) — W (63)]

2 an(PrP2) =1 =) witan VIY 30 60 = Vanyonl V152, 60 = W a0
= VI (01) — A (0| V (W 3 (05) — Wi ()]
| 252 (00) — X (00| + | % (1) — D ()
(Py,Py) Zw, cot | £+ 16 "’V/&%ﬂ»l(@ Wh @0l V/%P (%) W&{PQ(@ |
HAE (i) — A (00)| + W (D) — Wi (6]
| 25 (00) — 2 (8| V 15 () — %o ()]
VI3, 60 = Py V1P 5 00 = Py 00)]
VA (60) — AR ()N W (89) ~ W, ()

N

|25, (6:) — 25, (00| V1%, (1) — %6, (6)]
52
|

wcot

s m
wcot ]P)l, ]P)Q Z Wi cot Z —|— Z

|
) .
|
)
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Theorem 5 Considering three CPFSs IP;, P, and IPs, the weighted similarity measures hold following
properties(e.g. Sk

wsm)
1. 0< Sllzszn(Pl’P2> <1

2. Sk (]P)h]P)Q) == 1 lffPl - ]P)Q

wsin

3. Sk

wsin

4. lf]Pl - IP)Q - Pg, then Sk

wsin

(P17P2) Sk (]P)27]P)l)

wsin

(Py,P3) < Sk

wsin

(]P)l,]P)Q) and S (Pl,Pg) S S

wsin wsin

(P2, P3)

Proof 5 The proofs are similar to Theorem 1.

4. Numerical Examples

Example 1 There are two CPFSs P;, P, defined on UOD ®, denoted as follows:
]P>1 — (M627ri(u) ve 27rz(u)) ]P) _ ( 27ri(u)’ Me?m'(u))

where . and v range from o to 1and satisfy the condition 1> +v? < 1, as we can see from Fig 1c,Fig 1d,
Fig 1g,Fig 1h.

From Fig 1a,Fig 1b,Fig 1e,Fig 1f, we find that the similarity measures S'.., S} ., SL..., Sk, always lie
in the range [0,1], even though the parameter ;. and nu are changing. What is more, when . = v, the
similarity measures S, , S}, S}, Sl . obtain the maximum value of 1. Additionally, when yn = 1, v =
0oru = 0,v = 1, the similarity measures have the minimum value of 0. Therefore, the property 1
and property 2 are proved. The symmetry property is evidently satisfied by the presented similarity

measures, as illustrated in Fig. 1.

Example 2 There are three CPFSs, expressed as Py, P, IP5 in UOD ®, which satisfy Py C Py C Ps.

]P)l — (0'26271”1'(0.25)’ 0'9627ri(0.75))
P, — (0'5627@(0435)7 0.862”1(0‘55))
Py — (0.6627(0:49) (). 7¢27(0.35))

Take S as an example and we can calculate the results listed below:

sin

0.2 — 0.5% +]0.9% — 0.8%| 4 ]0.25% — 0.35%| + [0.75% — 0.557]

2 2
G4 (P1,Py) = 1 —sin g +| (\/1 —0.22 — 0-92) - (Vl —0.5% — 0-82) | = 0.6392
2 2
+ (VI=0257 =075) — (VI-0357—05%) |
0.5% — 0.6 + ]0.8% — 0.7%| + |0.35% — 0.45%| + |0.55% — 0.35%|
2 2
SL,(Py,P3) = 1 —sin % + (!\/1 —0.5% — 082) - (Vl —0.62 — 072) | — 0.7437

2 2
+ (VI=035-055) — (VI- 0457 0.357) |
0.2 — 0.6°| +]0.9° — 0.7%| 4 ]0.25% — 0.45%| + [0.75* — 0.357]
2 2
(P1,Ps) = 1 —sin g + (Vl —0.22 — 0-92) - (\/1 - 0.62 — 0-72> | = 0.4379

+ (V=025 - 0.752)2 - (Vi—0a5 - 0.352>2 |

S

sin
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Figure 1: The similarity measures in Example 1
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Similarly, we can obtain the results SL, (P, Py) = 0.6392 = SL (P, Py), SL (P53, Py) = 0.7437 =
Sl (Pg, Pg), Sl (]P)g, ]P)l) = 0.4379 = Sl (]P)l, ]P)g) AISO, it is obvious that Sl- (]P)l, ]P)s) < Sl~ (]P)l, ]P)Q)
and S (P, P3) < SL (Py,P3). Thus, property 3 and property 4 of our introduced similarity measures

sin sin sin sin sin
sin sin

are proved.

5. Applications

In this section, we apply the trigonometric similarity measures to some decision-making problems.

5.1 Description of decision-making problem

Consider that ® = {¢1, ¢, ..., ¢, } is a finite UOD and there are m known patterns which are
represented as CPFSs Q; (j = 1,2,...,m). The objective is to categorize the unknown patterns
which are denoted as CPFSs P; (t = 1,2, ..., s) based on its relationship with Q; (j = 1,2,...,m).
The detailed process is outlined as follows:

Step 1 Calculate the similarity between P, (t =1,2,...,s)and Q; (j = 1,2,...,m) through the
introduced similarity measures or weighted similarity measures.

Step 2 Select the maximum similarity among the calculated results.

Step 3 Obtain the classification result of IP;.

Algorithm 1 presents the corresponding official algorithmic process and the flowchart of decision-
making process is shown in Fig. 2.

Algorithm 1 Algorithm for decision-making problems.

Input: A group of known patterns Q; = {Q;,Qs, ..., Q. };
A group of unknown samples P, = {P, P, ..., P.};

Output: Classification of the unknown pattern P,

1 fort=1;t < sdo

2: /* Step1*/
forj=1;7 <mdo

Compute the similarity S(PP;, Q;) using Eq. 10- Eq. 25;

end for
/* Step 2 */
Select the maximum similarity among the calculated results;
/* Step 3 */

9: Classify the unknown sample P;;
10: end for

© N >u k@

5.2 Application in pattern recognition

Example 3 [9] There are four known patterns Q,, Q, Q3 and Q4 in UOD ®, which are represented
i ) i )

by CPFSs as Q; = {(¢i, Zp,(¢:) - ¢ 700 Do, (¢i) - ¢ Y00 | € @Y (j = 1,2,3,4) and the

unknown pattern P = {{¢;, Zp(¢;) - 27 %e00 B(¢;) - 2™ %) |, € ®). The objective of the
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Figure 2: The flowchart of the decision-making process.

problem is to determine the class that IP belongs to.

Q1 = {(¢1,0.2¢7™P 0.2e*™OV) (g, 0.5¢™O 0.0e*™ V) (g3, 0.1€”™OF) 05> O}
Qs = {(¢1,0.4€™? 0.2¢*™02)) (g, 0.7¢>™(OF) 0.0e*™ OV (g3, 0.1€”™ (O 0.5¢*703))}
Qs = {(¢1,0.4€>™D 0.2e>™ OV (g5, 0.5¢>™OD 0.0e*7O2)) (b3, 0.1e™(O2) 05> (0))}
Qs = {(¢1,0.6¢*™ O, 0.3e>™O) (¢, 0.4€>™0) 0.0e°™OV), (65,0.1€*™0, 05>}
P2,

]P) — {(¢17 0.3627” 0.5)7 0.2627”(0 .2) )7 ( 0 66271'2(0.3 70'06271‘7, 0‘2))’ (¢37 0.2627” (0.1) ,0.5627” 0.4))}

Considering the weight w = {0.3,0.35,0.35}, We employ various similarity measures to calculate
the similarity between P and Q;. The computed results are depicted in Table 1, Table 2 and Fig. 3.
According to the results, it is evident that [P has the maximum similarity with Q;. All the introduced
similarity measures and those used for comparison yield identical conclusions, indicating that the un-
known pattern P belongs to ;. Especially, we find that S&}L cannot compute the similarity, so it fails
to classify the unknown pattern. The reason for this is that during the logarithmic calculation in S‘S&L
a zero value is encountered. Logarithmic functions are undefined for zero and negative values in the
real number domain, which led to the inability to compute the result. Therefore, its application in
such a scenario is not feasible.

Furthermore, the degree of confidence(DoC) is employed to evaluate the effectiveness of various
similarity measures which is defined as follows:

m
DoC= > |S(P;P) - S(P,,P)| (26)
J=L,j#jo
where IP;; represents the classified result corresponding to IP. It is clear that a higher DoC' indicates a
better decision-making capability. In Fig. 4, we can see that the weighted similarity measures (WSimM)
exhibit a higher DoC values compared to the unweighted similarity measure (SimM) which under-
scores the significance of prior knowledge in the decision-making problems.
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Table 1: The results of similarity measures in Example 3.

Measures S(P,Q;) S(P,Q2) S(P,Q3) S(P,Q,) Classification

Swa 0.9117 0.8233  0.8817  0.8700 Q
Ssi 0.9117 0.8233 0.8817 0.8700 Q4
Swx 0.9533 0.9092  0.9383  0.9350 Q
Sc 0.9167 0.8233 0.8817 0.8833 Q
Syc 0.9117 0.8233 0.8817 0.8700 Q,
s\ NaN NaN NaN NaN NaN
Sk 0.8618 07315 0.8177 07984 Q
sz 0.8029 0.6020 07309  0.6946 Q
Sk, 0.9895 0.9445 0.9716  0.9736 Q
S2 . 0.9777 0.8632  0.9323  0.9398 @
St 0.9305  0.8589 0.9061 0.8972 Q1
SZ. 0.9000 07725  0.8550  0.8406 Q
Sk, 0.8707 07653  0.8371  0.8180 Q
S2, 0.8203 0.6597 07670 07332 Q

Note: Bold denotes the optimal solution.

Table 2: The results of weighted similarity measures in Example 3.

Measures S(P,Q;) S(P,Q) S(P,Q3) S(P,Q4) Classification

Sl,, ~ ©0.8643 07289 08125  0.8053 Q,
Sasin 0.8077 0.5983 07229 07035 Q
Sl.. ~ 0.9899 09430 0.9703  0.9753 Q
S2,. ~ 09788 08590 09292  0.9430 Q
Shum 093177 08574 09034  0.9008 Q
S2,.. ~ 0.9026 07695  0.8505  0.8455 Q,
Sweot 0.8729 0.7635 0.8327 0.8237 Q
S2, ~ 08244 0650 07605 07403 Q

Note: Bold denotes the optimal solution.
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Figure 3: Results of different similarity measures in Example 3.
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Figure 4: The DoC of different measures in Example 3.
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5.3 Application in medical diagnosis

Example 4 [36]Consider a medical diagnosis scenario for a patient P exhibiting symptoms
& = {Temperature(¢,), Headache(ps), Stomach pain(¢s3), Cough(¢4)}. The characteristics of symp-
toms for potential medical disease which are represented as P; = {Viral fever(P,), Malaria(IP;),

Typhoid(IP3), Stomach problem(P,)} are represented through the use of CPFSs. The complex Pythagorean
fuzzy relationship from symptoms to disease and patient is depicted by CPFSs in Table 3.

Table 3: CPFSs for disease and patient in Example 4.

o1 ?2 o3 P4
Pl \/762771\/7 \/76271'2\/@ \/7()2‘m\/7 \/7627”\/@ \/7()27”\/7 \/7()2‘m\/ﬁ \/762772\/7 \/7()271'2\/@
EDQ \/7627”\/7 \/76271'2\/075 \/7627‘1\/7 \/7627\'1\/071 \/762772\/@ F@Qﬂlm \/76271'2\/7 \/76271‘2\/071

\/7(,2772\/7 \/7()271'2@

\/7(,27r1\/7 \/7()2772\/@

\/7?27”\/7 \/7?27r1m

\/7()2772\/7 \/76 27iv/0.5

(Vo ) (VO ) (VO ) (VO )
(VO ) (VO ) (VO ) (VO )
]P]3 (\/7627'”\/7 \/762771\/071) (\/7627”\/7 \/76277:\/076) (\/7627”\/7 \/762‘”“/072) (\/762771\/7 \/7627”\/072)
(VO ) (VO ) (VO ) (VO )
(V0 ) (VO ) (VO ) (VO )

\/7627”\/76 \/76271'2\/@ \/7627”\/7 \/7627\'1\/@ \/7(;2772\/7 \/7627”@ \/76271'2\/7 \/7(1271'2@

Table 4: The results of similarity measures between P and PP; in Exam-

ple 4.

Measures S(P,P;) S(P,Py) S(P,P3) S(P,P,) Classification
Swu 0.9125 07000 07250  0.6000 P,
Ssxi 0.9125 0.7000 07250  0.6000 P,
Sw x 0.9438 0.7563 0.7750 0.6625 P,

Sc 0.9125 07000 07250  0.6000 P,
Syc 0.9125 07000 07250  0.6000 P,
SI% 0.9254 07190 07649  0.6633 P,
SL. 0.8651  0.5474  0.5876  0.4230 P,
S 0.8083 0.4493 0.3968  0.2972 P,
Sk, 0.9794 0.8883 0.8933 07960 P,
S2. 0.9666  0.8245 07637 07028 P,
Sk 0.9306 07595 07789  0.6716 P,
S2 0.9006 0.6952 0.6482  0.5843 P,
Sk, 0.8792 0.6141 0.6480  0.5144 P,
S2, 0.8302 0.5373  0.4938  0.4157 P,

Note: Bold denotes the optimal solution.

We consider the weight vector w = {0.35,0.25,0.2, 0.2}, then the calculated results are shown in
Table 4, Table 5 and Fig. 5. According to the results, we find that the value of S(P,Py) is the largest
across all the introduced measures. This indicate that the patient IP is diagnosis with Viral fever (IP;).
The DoC' values of different measures are depicted in Fig. 6. We can observe that the weighted sim-
ilarity measures (WSimM) demonstrate better performance in comparison to the unweighted simi-
larity measures (SimM), highlighting the significance of incorporating relevant prior knowledge into
decision-making scenarios. What is more, the similarity measures S2_,. and S. . especially exhibit a
high DoC' value, which implies that these similarity measures are the most dependable in the medi-
cal diagnosis problems. This will assist decision-makers in identifying the most trustworthy decisions

within this specific context.
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Table 5: The results of weighted similarity measures between P and IP; in
Example 4.

Measures S(P,Py) S(P,Py) S(P,P3) S(P,P,) Classification

Stein 0.8764 0.5544  0.5726  0.4196 Py
S2 i 0.8153  0.4560 0.3820  0.3092 P,
S) os 0.9829 0.8918 0.8887 07941 P,
S2 s 0.9708 0.8286 07575 07129 P,
S an 0.9366 07637 07708  0.6695 P,
S2m 0.9048 0.6994 0.6402  0.5932 P,
S ot 0.8883 06195 0.6358  0.5118 P,
S2 ot 0.8350 0.5425 0.4826  0.4252 Py

Note: Bold denotes the optimal solution.
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Figure 5: Results of different measures in Example 4.
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Figure 6: The DoC of different measures in Example 4.

6. Conclusions

In this paper, we present a set of similarity measures and weighted similarity measures based on
trigonometric functions, including sine function, cosine function, tangent function and cotangent func-
tion. Then, We confirm that the proposed measures fulfill essential properties and exhibit its accuracy
and efficacy through extensive numerical experiments. Furthermore, we apply these trigonometric
similarity measures to pattern recognition and medical diagnosis. The results demonstrate that our
proposed similarity measures are capable of achieving favorable outcomes in these applications. In
the future, we can present the method of adaptive weights based on the proposed similarity measures
to cope with different decision-making contexts. Additionally, trigonometric similarity measures are
expected to merit consideration for application in interval-valued Pythagorean fuzzy sets and complex
interval-valued Pythagorean fuzzy sets which will boost the precision of outcomes by express data in
interval format, particularly when handling uncertain data, and carries significant implications for both
research endeavors and practical implementations.

Acknowledgement
This research was not funded by any grant.

Conflicts of Interest
The authors declare no conflicts of interest.

References

[1 Akram, M., Zahid, K., & Kahraman, C. (2023). New optimization technique for group decision
analysis with complex pythagorean fuzzy sets. Journal of Intelligent & Fuzzy Systems, 44(3),
3621-3645. https://doi.org/10.3233/JIFS-22076 4

[2] Ali, M. Y. (2023). Some trigonometric similarity measures of complex fuzzy sets with applica-
tion. Ural Mathematical Journal, 9(1), 18-28. https://doi.org/10.15826/um;j.2023.1.002

173


https://doi.org/10.3233/JIFS-220764
https://doi.org/10.15826/umj.2023.1.002

(3]

[4]

[5]

[6]

[7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Ali, Z., Emam, W., Mahmood, T., & Wang, H. (2024). Archimedean heronian mean operators
based on complex intuitionistic fuzzy sets and their applications in decision-making problems.
Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e24767

Alkouri, A. (J. S., & Salleh, A. R. (2012). Complex intuitionistic fuzzy sets. AIP Conference Pro-
ceedings, 1482(1), 464-470. https://doi.org/10.1063/1.4757515

Arora, H. D., Kumar, V., & Naithani, A. (2024). Impact of trigonometric similarity measures for
pythagorean fuzzy sets and their applications. Yugoslav Journal of Operations Research. https:
//doi.org/10.2298/YJOR220515004A

Asif, M., Ishtiaq, U., & Argyros, |. K. (2025). Hamacher aggregation operators for pythagorean
fuzzy set and its application in multi-attribute decision-making problem. Spectrum of Opera-
tional Research, 2(1), 27-40. https://doi.org/0000-0002-5228-1073

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. https:
//doi.org/10.1007/978-3-7908-1870-3_1

Garg, H., Kahraman, C., Ali, Z., & Mahmood, T. (2023). Interaction hamy mean operators for
complex pythagorean fuzzy information and their applications to security threats in computers.
Journal of Intelligent & Fuzzy Systems, 44(3), 4459-4479. https://doi.org/10.3233/JIFS-220947
Garg, H., & Rani, D. (2019). Some results on information measures for complex intuitionistic
fuzzy sets. International Journal of Intelligent Systems, 34(10), 2319-2363. https://doi.org/10.
1002/int.22127

Garg, H., & Rani, D. (2020). Novel aggregation operators and ranking method for complex in-
tuitionistic fuzzy sets and their applications to decision-making process. Artificial Intelligence
Review, 53, 3595-3620. https://doi.org/10.1007/510462-019-09772-X

Gogoi, S., Gohain, B., & Chutia, R. (2023). Distance measures on intuitionistic fuzzy sets based
on cross-information dissimilarity and their diverse applications. Artificial Intelligence Review,
56(Suppl 3), 3471-3514. https://doi.org/10.1007/510462-023-10608-y

Hezam, |. M., Rahman, K., Alshamrani, A., & Bozanic, D. (2023). Geometric aggregation opera-
tors for solving multicriteria group decision-making problems based on complex pythagorean
fuzzy sets. Symmetry, 15(4), 826. https://doi.org/10.3390/sym15040826

Hussain, Z., Alam, S., Hussain, R., & ur Rahman, S. (2024). New similarity measure of pythagorean
fuzzy sets based on the jaccard index with its application to clustering. Ain Shams Engineering
Journal, 15(1), 102294. https://doi.org/10.1016/j.asej.2023.102294

Krishankumar, R., Ravichandran, K., Aggarwal, M., & Pamucar, D. (2023). An improved entropy
function for the intuitionistic fuzzy sets with application to cloud vendor selection. Decision
Analytics Journal, 7, 100262. https://doi.org/10.1016/j.dajour.2023.100262

Labassi, F., ur Rehman, U., Alsuraiheed, T., Mahmood, T., & Khan, M. A. (2024). A novel ap-
proach towards complex pythagorean fuzzy sets and their applications in visualization tech-
nology. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3393138

Liao, Y., & Peng, X. (2024). Pythagorean fuzzy information measure with applications in multi-
criteria decision-making and medical diagnosis. Engineering Applications of Artificial Intelli-
gence, 136, 108927. https://doi.org/10.1016/j.engappai.2024.108927

Liu, P, Ali, Z., & Ding, J. (2024). Power dombi aggregation operators for complex pythagorean
fuzzy sets and their applications in green supply chain management. International Journal of
Fuzzy Systems, 1-16. https://doi.org/10.1007/5s40815-024-01691-6

Liu, P, Ali, Z., & Mahmood, T. (2023). Archimedean aggregation operators based on complex
pythagorean fuzzy sets using confidence levels and their application in decision making. Inter-
national Journal of Fuzzy Systems, 25(1), 42-58. https://doi.org/10.1016/j.engappai.2023.
107153

174


https://doi.org/10.1016/j.heliyon.2024.e24767
https://doi.org/10.1063/1.4757515
https://doi.org/10.2298/YJOR220515004A
https://doi.org/10.2298/YJOR220515004A
https://doi.org/0000-0002-5228-1073
https://doi.org/10.1007/978-3-7908-1870-3_1
https://doi.org/10.1007/978-3-7908-1870-3_1
https://doi.org/10.3233/JIFS-220947
https://doi.org/10.1002/int.22127
https://doi.org/10.1002/int.22127
https://doi.org/10.1007/s10462-019-09772-x
https://doi.org/10.1007/s10462-023-10608-y
https://doi.org/10.3390/sym15040826
https://doi.org/10.1016/j.asej.2023.102294
https://doi.org/10.1016/j.dajour.2023.100262
https://doi.org/10.1109/ACCESS.2024.3393138
https://doi.org/10.1016/j.engappai.2024.108927
https://doi.org/10.1007/s40815-024-01691-6
https://doi.org/10.1016/j.engappai.2023.107153
https://doi.org/10.1016/j.engappai.2023.107153

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Liu, P, Ali, Z., Mahmood, T., & Geng, Y. (2023). Prioritized aggregation operators for complex
intuitionistic fuzzy sets based on aczel-alsina t-norm and t-conorm and their applications in
decision-making. International Journal of Fuzzy Systems, 25(7), 2590-2608. https://doi.org/
10.1007/540815-023-01541-X

Liu, Z. (2023). An effective conflict management method based on belief similarity measure
and entropy for multi-sensor data fusion. Artificial Intelligence Review, 56(12), 15495-15522.
https://doi.org/10.1007/510462-023-10533-0

Liu, Z. (2024). Hellinger distance measures on pythagorean fuzzy environment via their appli-
cations. International Journal of Knowledge-based and Intelligent Engineering Systems, 28(2),
211-229. https://doi.org/10.3233/KES-230150

Liu, Z., Deveci, M., Pamucar, D., & Pedrycz, W. (2024). An effective multi-source data fusion ap-
proach based on a-divergence in belief functions theory with applications to air target recog-
nition and fault diagnosis. Information Fusion, 110, 102458. https://doi.org/10.1016/j.inffus.
2024.102458

Liu, Z.,Hezam, |. M., Letchmunan, S., Qiu, H., & Alshamrani, A. M. (2024). Generalized similarity
measure for multisensor information fusion via dempster-shafer evidence theory. IEEE Access,
12, 104629-104642. https://doi.org/10.1109/ACCESS.2024.3435459

Liu, Z., & Letchmunan, S. (2024). Enhanced fuzzy clustering for incomplete instance with evi-
dence combination. ACM Transactions on Knowledge Discovery from Data, 18(3), 1-20. https:
//doi.org/10.1145/3638061

Liu, Z., Qiu, H., Deveci, M., Pedrycz, W., & Siarry, P. (2024). Multi-view neutrosophic c-means
clustering algorithms. Expert Systems with Applications, 125454. https://doi.org/10.1016/j.
eswa.2024.125454

Liu, Z., Qiu, H., & Letchmunan, S. (2024). Self-adaptive attribute weighted neutrosophic c-
means clustering for biomedical applications. Alexandria Engineering Journal, 96, 42-57. https:
//doi.org/10.1016/j.a€j.2024.03.092

Liu, Z., Wang, D., Letchmunan, S., Aljohani, S., & Mlaiki, N. (2024). Elementary function-based
fermatean fuzzy similarity measures: Applications to medical pattern recognition and multi-
criteria decision-making. IEEE Access, 12, 163452-163464. https://doi.org/10.1109/ACCESS.
2024.3490606

Mahmood, T., & Ali, Z. (2023). Multi-attribute decision-making methods based on aczel-alsina
power aggregation operators for managing complex intuitionistic fuzzy sets. Computational
and Applied Mathematics, 42(2), 87. https://doi.org/10.1007/540314-023-02204-1

Ngan, S.-C. (2024). An extension framework for creating operators and functions for intuition-
istic fuzzy sets. Information Sciences, 666, 120336. https://doi.org/10.1016/j.ins.2024.120336

Qiu, H., Liu, Z., & Letchmunan, S. (2024). Incm: Neutrosophic c-means clustering algorithm for
interval-valued data. Granular Computing, 9(2), 34. https://doi.org/10.1007/541066-024-
00452-y

Rahman, K., Garg, H., Ali, R., Alfalqi, S. H., & Lamoudan, T. (2023). Algorithms for decision-
making process using complex pythagorean fuzzy set and its application to hospital siting for
covid-19 patients. Engineering Applications of Artificial Intelligence, 126, 107153. https://doi.
org/10.1016/j.engappai.2023.107153

Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002). Complex fuzzy sets. IEEE transactions
on fuzzy systems, 10(2), 171-186. https://doi.org/10.1109/91.995119

Rani, D., & Garg, H. (2017). Distance measures between the complex intuitionistic fuzzy sets
and their applications to the decision-making process. International Journal for Uncertainty
Quantification, 7(5). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356

175


https://doi.org/10.1007/s40815-023-01541-x
https://doi.org/10.1007/s40815-023-01541-x
https://doi.org/10.1007/s10462-023-10533-0
https://doi.org/10.3233/KES-230150
https://doi.org/10.1016/j.inffus.2024.102458
https://doi.org/10.1016/j.inffus.2024.102458
https://doi.org/10.1109/ACCESS.2024.3435459
https://doi.org/10.1145/3638061
https://doi.org/10.1145/3638061
https://doi.org/10.1016/j.eswa.2024.125454
https://doi.org/10.1016/j.eswa.2024.125454
https://doi.org/10.1016/j.aej.2024.03.092
https://doi.org/10.1016/j.aej.2024.03.092
https://doi.org/10.1109/ACCESS.2024.3490606
https://doi.org/10.1109/ACCESS.2024.3490606
https://doi.org/10.1007/s40314-023-02204-1
https://doi.org/10.1016/j.ins.2024.120336
https://doi.org/10.1007/s41066-024-00452-y
https://doi.org/10.1007/s41066-024-00452-y
https://doi.org/10.1016/j.engappai.2023.107153
https://doi.org/10.1016/j.engappai.2023.107153
https://doi.org/10.1109/91.995119
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356

[34] Ullah,K.,Mahmood,T., Ali,Z., &Jan, N. (2020). On some distance measures of complex pythagorean
fuzzy sets and their applications in pattern recognition. Complex & Intelligent Systems, 6, 15-
27. https://doi.org/10.1007/540747-019-0103-6

[35] Wang,D., Yuan,V.,Liu,Z.,Zhu,S., &Sun, Z. (2024). Novel distance measures of g-rung orthopair
fuzzy sets and their applications. Symmetry, 16(5), 574. https://doi.org/10.3390/sym16050574

[36] Wu, D., Zhu, Z., Ullah, K., Liu, L., Wu, X., & Zhang, X. (2023). Analysis of hamming and hausdorff
3d distance measures for complex pythagorean fuzzy sets and their applications in pattern
recognition and medical diagnosis. Complex & Intelligent Systems, 9(4), 4147-4158. https://
doi.org/10.1007/540747-022-00939-8

[37] Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision making. IEEE
Transactions on Fuzzy Systems, 22(4), 958-965. https://doi.org/10.1109/TFUZZ.2013.2278989

[38] Yang,Y., Zhang, D., Wang, Y., & Zhang, Y. (2018). Similarity measure of intuitionistic fuzzy sets
based on sine function and its application. Computer Engineering & Science, 40(01), 133. https:
//doi.org/http://joces.nudt.edu.cn/EN/Y2018/V40/101/133

[39] Ye, J. (2016). Similarity measures of intuitionistic fuzzy sets based on cosine function for the
decision making of mechanical design schemes. Journal of Intelligent & Fuzzy Systems, 30(1),
151-158. https://doi.org/0.3233/IFS-151741

[40] Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/
S0019-9958(65)90241-X

[41] Zhou, Y., Ejegwa, P. A., & Johnny, S. E. (2023). Generalized similarity operator for intuitionistic
fuzzy sets and its applications based on recognition principle and multiple criteria decision
making technique. International Journal of Computational Intelligence Systems, 16(1), 85. https:
//doi.org/10.1007/544196-023-00245-2

176


https://doi.org/10.1007/s40747-019-0103-6
https://doi.org/10.3390/sym16050574
https://doi.org/10.1007/s40747-022-00939-8
https://doi.org/10.1007/s40747-022-00939-8
https://doi.org/10.1109/TFUZZ.2013.2278989
https://doi.org/http://joces.nudt.edu.cn/EN/Y2018/V40/I01/133
https://doi.org/http://joces.nudt.edu.cn/EN/Y2018/V40/I01/133
https://doi.org/0.3233/IFS-151741
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/s44196-023-00245-2
https://doi.org/10.1007/s44196-023-00245-2

	Introduction
	Preliminary
	Complex fuzzy set
	Complex intuitionistic fuzzy set
	Complex pythagorean fuzzy set

	Similarity Measures for CPFSs
	Existing Similarity Measures
	Proposed Similarity Measures for CPFSs
	Proposed Weighted Similarity Measures for CPFSs

	Numerical Examples
	Applications
	Description of decision-making problem
	Application in pattern recognition
	Application in medical diagnosis

	Conclusions

