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Complex Pythagorean fuzzy sets (CPFSs) extend Pythagorean fuzzy sets by ex-pressing membership, non-membership, and hesitancy degrees using complexnumbers. An urgent issue in CPFSs is determining how to accurately measure thesimilarity between sets. Similarity measures are crucial for assessing the close-ness between two objects and are extensively applied in decision-making. In thispaper, we propose new similarity measures based on trigonometric functions andtheir weighted representations. Additionally, we investigate the properties thesemeasures satisfy and demonstrate their effectiveness through several numericalexamples. Lastly, we apply these similarity measures to decision-making prob-lems, including pattern recognition and medical diagnosis.Keywords:Complex Pythagorean fuzzy sets;similarity measures; trigonometricfunction; decision-making

1. Introduction
Similarity measure is an important concept in probability theory, as it serves to evaluate the degreeof resemblance between two variables or samples. The similarity between two objects represents anumerical indication of how much they resemble each other. As a result, objects that are more alikeexhibit higher levels of similarity. The probability theory-based similarity measure method excels inhandling specific information scenarios. Nevertheless, in practical scenarios, decision-makers oftenencounter uncertain information, rendering these methods inadequate and unable to yield preciseoutcomes when confronted with such uncertainties.
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Up to now, various theories have been developed, including fuzzy sets [24, 27, 35], evidence the-ory [20, 22, 23], and neutrosophic sets [25, 26, 30]. The introduction of fuzzy set theory by [40]marked a significant milestone in this field, forming the basis for fuzzy decision-making. Building onthis, Atanassov [7] proposed intuitionistic fuzzy sets (IFSs), which include both membership and non-membership degrees, restricting their combined total to 1 or less. Since then, IFSs have been appliedacross a range of decision-making areas [11, 14, 29, 41]. However, this constraint limits their effective-ness in practical problem-solving. To address the limitation, Yager [37] introduced Pythagorean fuzzysets (PFSs), which ensure that the sum of the squares of the membership and non-membership de-grees is no greater than 1. Due to their advantages, PFSs have attracted significant research interestand have been applied in various decision-making contexts [6, 13, 16, 21]. Despite these advancements,PFSs still offer opportunities for further exploration and refinement.Over the years, numerous applications of traditional FSs theory models have been explored. How-ever, due to their reliance on real-valued membership grades, these models were unable to effectivelyrepresent two-dimensional vague data. A significant advancement in FSs theory came with the intro-duction of complex fuzzy sets (CFSs) in [32], which expanded the framework to include complex-valuedmembership, allowing for the representation of phase information and multidimensional attributes.Building on this, the literature [4] proposed complex intuitionistic fuzzy sets (CIFSs), incorporating twocomplex functions that represent membership and non-membership degrees. Following this devel-opment, extensive research has been conducted on CIFSs [3, 10, 19, 28, 33].However, CIFSs face similar limitation to IFSs, leading [34] to extend CIFSs into complex Pythagoreanfuzzy sets (CPFSs), which have since attracted considerable attention[1, 8, 15]. For instance, the litera-ture [31] introduced new complex Pythagorean fuzzy Einstein weighted geometric and hybrid geomet-ric operators, aimed at mitigating the transmission rate of COVID-19. Furthermore, Wu et al. [36] high-lighted that the distance measure proposed in [34] does not satisfy the axiomatic criteria for CPFSs,prompting the development of novel distance measures based on CPFSs. Liu et al. [18] designed a newclass of Archimedean aggregation operators tailored for CPFSs to improve decision-making processes.Hezam et al. [12] introduced complex Pythagorean fuzzy geometric aggregation operators to addressmulticriteria group decision-making problems. Additionally, Liu et al. [17] developed Dombi aggrega-tion operators based on CPFSs information, applying them to solve green supply chain managementissues within a complex Pythagorean fuzzy context.Despite many research efforts and notable progress within CPFSs, there remains a gap in the devel-opment of similarity measures for CPFSs. Some existing similarity measures may lead to counterintu-itive results for various reasons. Trigonometric functions, which are fundamental mathematical tools,have been widely applied in the study of similarity measures for IFSs and PFSs [5, 38, 39]. Recently, Ali[2] introduced trigonometric function-based similarity measures for CFSs. To capture more uncertaininformation and expand the range of applications, we propose a set of similarity measures for CPFSsbased on trigonometric functions, along with their weighted forms. Owing to the inherent characteris-tics of the trigonometric functions, our proposed measures effectively identify the difference betweenCPFSs.The main contributions are summarized below:
1. We introduce a novel set of similarity measures based on trigonometric functions, specificallyincorporating sine, cosine, tangent and cotangent functions
2. We show that the proposed measure satisfies the necessary properties and provide numericalexamples to support the validity of the measures.
3. We apply these similarity measures to various decision-making problems to showcase their prac-tical utility.
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This article is organized as follows: In section 2, we briefly introduce the basic concepts of CFS,CIFS,CPFS.We introduce some existing similarity measures and propose the trigonometric similarity measuresand weighted similarity measures in section 3. Then, in section 4, we verify the properties that ourpresented similarity measures hold through some numerical examples. In section 5, we apply thesemeasures to pattern recognition and medical diagnosis. Section 6 concludes the papers.
2. Preliminary

This section will provide some basic concept about CFS, CIFS and CPFS.
2.1 Complex fuzzy set

Definition 1 [32] Assume that Φ is a finite universe of discourse (UOD). The complex fuzzy set (CFS) C
in Φ is defined below:

C = {⟨MC(ϕ)⟩|ϕ ∈ Φ} (1)
where MC : Φ → {y : y ∈ C, |y| ≤ 1} is the complex-valued membership degree, which is

denoted asMC = XC(ϕ) · e2πiWXC(ϕ) where 0 ≤ XC(ϕ) ≤ 1 and 0 ≤ WC(ϕ) ≤ 1.

2.2 Complex intuitionistic fuzzy set

Definition 2 [4] Assume that Φ is a finite UOD. The complex intuitionistic fuzzy set (CIFS) I in Φ is
defined below:

I = {⟨MI(ϕ),NI(ϕ)⟩|ϕ ∈ Φ} (2)
where MI ,NI : Φ → {y : y ∈ C, |y| ≤ 1} are the complex-valued membership and non-

membership degrees, which are denoted as MI = XI(ϕ) · e2πiWXI(ϕ) ,NI = YI(ϕ) · e2πiWYI(ϕ) ,
where XI(ϕ), YI(ϕ) ∈ [0, 1] and XI(ϕ) + YI(ϕ) ≤ 1. Additionally, WXI(ϕ),WYI(ϕ) ∈ [0, 1] and
WXI(ϕ) + WYI(ϕ) ≤ 1. Moreover, the hesitancy degree is defined as HI(ϕ) = HI(ϕ) · e2πiWHI(ϕ) ,
where HI(ϕ) = 1− XI(ϕ)− YI(ϕ) and WHI(ϕ) = 1− WXI(ϕ) − WYI(ϕ).

2.3 Complex pythagorean fuzzy set

Definition 3 [34] Assume that Φ is a finite UOD. The complex Pythagorean fuzzy set (CPFS) P in Φ is
defined below:

P = {⟨MP(ϕ),NP(ϕ)⟩|ϕ ∈ Φ} (3)
where MP,NP : Φ → {y : y ∈ C, |y| ≤ 1} are the complex-valued membership and non-

membership degrees, which are denoted as MP = XP(ϕ) · e2πiWXP(ϕ) ,NP = YP(ϕ) · e2πiWYP(ϕ) ,
whereXP(ϕ), YP(ϕ) ∈ [0, 1] andX 2

P(ϕ)+Y 2
P(ϕ) ≤ 1. Additionally, WXP(ϕ),WYP(ϕ) ∈ [0, 1] andW 2

XP(ϕ)
+

W 2
YP(ϕ)

≤ 1. Moreover, the hesitancy degree is defined asHP(ϕ) = HP(ϕ)·e2πiWHP(ϕ) , whereHP(ϕ) =√
1− X 2

P (ϕ)− Y 2
P (ϕ) and WHP(ϕ) =

√
1− W 2

XP(ϕ)
− W 2

YP(ϕ)
.

3. Similarity Measures for CPFSs
In this section, we first review some existing similarity measures, then we define some novel sim-ilarity measures between two CPFSs P1 = {⟨ϕi,XP1(ϕi) · e

2πiWXP1 (ϕi) ,YP1(ϕi) · e
2πiWYP1 (ϕi)⟩|ϕi ∈ Φ}

and P2 = {⟨ϕi,XP2(ϕi) · e
2πiWXP2 (ϕi) ,YP2(ϕi) · e

2πiWYP2 (ϕi)⟩|ϕi ∈ Φ} on UOD Φ.
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3.1 Existing Similarity Measures

Definition 4 Similaritymeasures based on the distancemeasures for CPFSs proposed byWuet al. [36].

SWu(P1,P2) = 1− 1

2m

m∑
i=1



1

4

(
|X 2

P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|+ |H 2

P1
(ϕi)− H 2

P2
(ϕi)|

)
+
1

2
max

(
|X 2

P1
(ϕi)− X 2

P2
(ϕi)|, |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|, |H 2

P1
(ϕi)− H 2

P2
(ϕi)|

)
+
1

4

(
|W 2

XP1
(ϕi)− W 2

XP2
(ϕi)|+ |W 2

YP1
(ϕi)− W 2

YP2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|

)
+
1

2
max

(
|W 2

XP1
(ϕi)− W 2

XP2
(ϕi)|, |W 2

YP1
(ϕi)− W 2

YP2
(ϕi)|, |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|

)


(4)

SSK(P1,P2) = 1− 1

4m

m∑
i=1

(
|X 2

P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|+ |H 2

P1
(ϕi)− H 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|+ |W 2
HP1

(ϕi)− W 2
HP2

(ϕi)|

)
(5)

SWX(P1,P2) = 1− 1

4m

m∑
i=1

(
|X 2

P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|

)
(6)

SG(P1,P2) = 1− 1

2m

m∑
i=1

(
max{|X 2

P1
(ϕi)− X 2

P2
(ϕi)|, |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|}

+max{|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|, |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|}

)
(7)

SY C(P1,P2) = 1− 1

2m

m∑
i=1

(
max{|X 2

P1
(ϕi)− X 2

P2
(ϕi)|, |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|, |H 2

P1
(ϕi)− H 2

P2
(ϕi)|}

+max{|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|, |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|, |W 2
HP1

(ϕi)− W 2
HP2

(ϕi)|}

)
(8)

S
(1)
Wu = 1− 1

2m

m∑
i=1


√

1

2

(
L
(
1− X 2

P1
(ϕi), 1− X 2

P2
(ϕi)

))
+ L

(
Y 2

P1
(ϕi),Y 2

P2
(ϕi)

)
+

√
1

2

(
L
(
1− W 2

XP1
(ϕi), 1− W 2

XP2
(ϕi)

))
+ L

(
W 2

YP1
(ϕi),W 2

YP1
(ϕi)

)
 (9)

where L(α, β) = α log2
2α
α+β

+ β log2
2β
α+β

.

3.2 Proposed Similarity Measures for CPFSs

In this section, we will introduce some similarity measures based on trigonometric functions.
Definition 5 For two CPFSs P1 and P2 , the similarity measures (S 1

sin, S 2
sin) based on sine function are

defined as:
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S 1
sin(P1,P2) = 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (10)

S 2
sin(P1,P2) = 1− 1

m

m∑
i=1

sin

π

2

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)| ∨ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (11)

Theorem 1 Considering three CPFSs P1,P2 and P3, S k
sin(k = 1, 2) holds the following properties:

1. S k
sin(P1,P2) = S k

sin(P2,P1)

2. S k
sin(P1,P2) = 1 iff P1 = P2

3. 0 ≤ S k
sin(P1,P2) ≤ 1

4. If P1 ⊆ P2 ⊆ P3, then S k
sin(P1,P3) ≤ S k

sin(P1,P2) and S k
sin(P1,P3) ≤ S k

sin(P2,P3)

Proof 1 S 1
sin as an example, for two CPFSs P1 and P2, we have:

S 1
sin(P1,P2) = 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|




S 1
sin(P2,P1) = 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P2
(ϕi)− X 2

P1
(ϕi)|+ |Y 2

P2
(ϕi)− Y 2

P1
(ϕi)|

+|W 2
XP2

(ϕi)− W 2
XP1

(ϕi)|+ |W 2
YP2

(ϕi)− W 2
YP1

(ϕi)|
+|H 2

P2
(ϕi)− H 2

P1
(ϕi)|+ |W 2

HP2
(ϕi)− W 2

HP1
(ϕi)|




Obviously,

|X 2
P1
(ϕi)− X 2

P2
(ϕi)| = |X 2

P2
(ϕi)− X 2

P1
(ϕi)|

|Y 2
P1
(ϕi)− Y 2

P2
(ϕi)| = |Y 2

P2
(ϕi)− Y 2

P1
(ϕi)|

|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)| = |W 2
XP2

(ϕi)− W 2
XP1

(ϕi)|
|W 2

YP1
(ϕi)− W 2

YP2
(ϕi)| = |W 2

YP2
(ϕi)− W 2

YP1
(ϕi)|

|H 2
P1
(ϕi)− H 2

P2
(ϕi)| = |H 2

P2
(ϕi)− H 2

P1
(ϕi)|

|W 2
HP1

(ϕi)− W 2
HP2

(ϕi)| = |W 2
HP2

(ϕi)− W 2
HP1

(ϕi)|

Thus, we can obtain S 1
sin(P1,P2) =S 1

sin(P2,P1)
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Proof 2 S 1
sin as an example, for two CPFSs P1 and P2, assume P1 = P2, then we have:

X 2
P1
(ϕi) = X 2

P2
(ϕi),Y

2
P1
(ϕi) = Y 2

P2
(ϕi),W

2
XP1

(ϕi) = W 2
XP2

(ϕi),

W 2
YP1

(ϕi) = W 2
YP2

(ϕi),H
2
P1
(ϕi) = H 2

P2
(ϕi),W

2
HP1

(ϕi) = W 2
HP2

(ϕi)

⇒|X 2
P1
(ϕi)− X 2

P2
(ϕi)| = 0, |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)| = 0,

|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)| = 0, |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)| = 0

|H 2
P1
(ϕi)− H 2

P2
(ϕi)| = 0, |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)| = 0

⇒

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|

 = 0

⇒ sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 = 0

Hence, we can obtain:

S 1
sin(P1,P2) = 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 = 1

Considering S 1
sin(P1,P2) = 1, for any ϕi ∈ Φ, we have:

S 1
sin(P1,P2) = 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 = 1

Therefore, we can obtain:

|X 2
P1
(ϕi)− X 2

P2
(ϕi)| = 0, |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)| = 0

|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)| = 0, |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)| = 0

|H 2
P1
(ϕi)− H 2

P2
(ϕi)| = 0, |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)| = 0

⇒X 2
P1
(ϕi) = X 2

P2
(ϕi),Y

2
P1
(ϕi) = Y 2

P2
(ϕi),W

2
XP1

(ϕi) = W 2
XP2

(ϕi),

W 2
YP1

(ϕi) = W 2
YP2

(ϕi), |H 2
P1
(ϕi) = H 2

P2
(ϕi)|, |W 2

HP1
(ϕi) = W 2

HP2
(ϕi)|

Thus, we can prove that S 1
sin(P1,P2) = 1 iff P1 = P2
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Proof 3 S 1
sin as an example, for two CPFSs P1 and P2, we can obtain:

0 ≤ X 2
P1
(ϕi),X

2
P2
(ϕi),Y

2
P1
(ϕi),Y

2
P1
(ϕi),W

2
XP1

(ϕi),W
2

XP2
(ϕi),W

2
YP1

(ϕi),W
2

YP2
(ϕi) ≤ 1

⇒ 0 ≤

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|

 ≤ 1

⇒ 0 ≤ sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 ≤ 1

⇒ 0 ≤ 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 ≤ 1

Therefore, we can prove 0 ≤ S 1
sin(P1,P2) ≤ 1.

Proof 4 S 1
sin as an example, for three CPFSs P1, P2, P3, considering P1 ⊆ P2 ⊆ P3, then we have:

X 2
P1
(ϕi) ≤ X 2

P2
(ϕi) ≤ X 2

P3
(ϕi),W

2
XP1

(ϕi) ≤ W 2
XP2

(ϕi) ≤ W 2
XP3

(ϕi)

Y 2
P1
(ϕi) ≥ Y 2

P2
(ϕi) ≥ Y 2

P3
(ϕi),W

2
YP1

(ϕi) ≥ W 2
YP2

(ϕi) ≥ W 2
YP3

(ϕi)

and

|X 2
P1
(ϕi)− X 2

P2
(ϕi)| ≤ |X 2

P1
(ϕi)− X 2

P3
(ϕi)|

|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)| ≤ |W 2
XP1

(ϕi)− W 2
XP3

(ϕi)|
|Y 2

P1
(ϕi)− Y 2

P2
(ϕi)| ≤ |Y 2

P1
(ϕi)− Y 2

P3
(ϕi)|

|W 2
YP1

(ϕi)− W 2
YP2

(ϕi)| ≤ |W 2
YP1

(ϕi)− W 2
YP3

(ϕi)|

Hence, we can obtain:

S 1
sin(P1,P3) = 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|




≤ 1− 1

m

m∑
i=1

sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1

(ϕi)− W 2
XP2

(ϕi)|+ |W 2
YP1

(ϕi)− W 2
YP2

(ϕi)|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|




= S 1
sin(P1,P2)

We can get S 1
sin(P1,P3) ≤ S 1

sin(P2,P3) in the sameway. Therefore,we can prove that ifP1 ⊆ P2 ⊆
P3, then S 1

sin(P1,P3) ≤ S 1
sin(P1,P2) and S 1

sin(P1,P3) ≤ S 1
sin(P2,P3).

Definition 6 For two CPFSs P1 and P2 , the similarity measures (S 1
cos, S 2

cos) between CPFSs P1 and P2

based on cosine function are defined as:
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S 1
cos(P1,P2) =

1

m

m∑
i=1

cos

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|+ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (12)

S 2
cos(P1,P2) =

1

m

m∑
i=1

cos

π

2

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

| ∨ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (13)

Theorem 2 Considering three CPFSs P1,P2 and P3, S k
cos(k = 1, 2) holds the following properties:

1. S k
cos(P1,P2) = S k

cos(P2,P1)

2. S k
cos(P1,P2) = 1 iff P1 = P2

3. 0 ≤ S k
cos(P1,P2) ≤ 1

4. If P1 ⊆ P2 ⊆ P3, then S k
cos(P1,P3) ≤ S k

cos(P1,P2) and S k
cos(P1,P3) ≤ S k

cos(P2,P3)

Definition 7 For two CPFSs P1 and P2 , the similarity measures (S 1
tan, S 2

tan) between CPFSs P1 and P2

based on tangent function are defined as:

S 1
tan(P1,P2) = 1− 1

m

m∑
i=1

tan

 π

16

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|+ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (14)

S 2
tan(P1,P2) = 1− 1

m

m∑
i=1

tan

π

4

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

| ∨ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (15)

Theorem 3 Considering three CPFSs P1,P2 and P3, S k
tan(k = 1, 2) holds the following properties:

1. S k
tan(P1,P2) = S k

tan(P2,P1)

2. S k
tan(P1,P2) = 1 iff P1 = P2

3. 0 ≤ S k
tan(P1,P2) ≤ 1

4. If P1 ⊆ P2 ⊆ P3, then S k
tan(P1,P3) ≤ S k

tan(P1,P2) and S k
tan(P1,P3) ≤ S k

tan(P2,P3)

Definition 8 For two CPFSs P1 and P2 , the similarity measures (S 1
cot, S 2

cot) between CPFSs P1 and P2

based on cotangent function are defined as:

S 1
cot(P1,P2) =

1

m

m∑
i=1

cot

π

4
+

π

16

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|+ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (16)

S 2
cot(P1,P2) =

1

m

m∑
i=1

cot

π

4
+

π

4

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

| ∨ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (17)
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Theorem 4 Considering three CPFSs P1,P2 and P3, S k
cot(k = 1, 2) holds the following properties:

1. S k
cot(P1,P2) = S k

cot(P2,P1)

2. S k
cot(P1,P2) = 1 iff P1 = P2

3. 0 ≤ S k
cot(P1,P2) ≤ 1

4. If P1 ⊆ P2 ⊆ P3, then S k
cot(P1,P3) ≤ S k

cot(P1,P2) and S k
cot(P1,P3) ≤ S k

cot(P2,P3)

3.3 Proposed Weighted Similarity Measures for CPFSs

In this section, we will further introduce the weighted similarity measures based on sine, cosine,tangent and cotangent functions.
Definition 9 For twoCPFSsP1 andP2 , theweighted similaritymeasures based on sine, cosine, tangent
and cotangent functions are defined as:

S 1
wsin(P1,P2) = 1−

m∑
i=1

ωi sin

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|+ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (18)

S 2
wsin(P1,P2) = 1−

m∑
i=1

ωi sin

π

2

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

| ∨ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (19)

S 1
wcos(P1,P2) =

m∑
i=1

ωi cos

π

8

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|+ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (20)

S 2
wcos(P1,P2) =

m∑
i=1

ωi cos

π

2

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

| ∨ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (21)

S 1
wtan(P1,P2) = 1−

m∑
i=1

ωi tan

 π

16

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|+ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (22)

S 2
wtan(P1,P2) = 1−

m∑
i=1

ωi tan

π

4

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

| ∨ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (23)

S 1
wcot(P1,P2) =

m∑
i=1

ωi cot

π

4
+

π

16

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)|+ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

+|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|+ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
+|H 2

P1
(ϕi)− H 2

P2
(ϕi)|+ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (24)

S 2
wcot(P1,P2) =

m∑
i=1

ωi cot

π

4
+

π

4

 |X 2
P1
(ϕi)− X 2

P2
(ϕi)| ∨ |Y 2

P1
(ϕi)− Y 2

P2
(ϕi)|

∨|W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

| ∨ |W 2
XP1 (ϕi)

− W 2
XP2 (ϕi)

|
∨|H 2

P1
(ϕi)− H 2

P2
(ϕi)| ∨ |W 2

HP1
(ϕi)− W 2

HP2
(ϕi)|


 (25)
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Theorem 5 Considering three CPFSs P1,P2 and P3, the weighted similarity measures hold following
properties(e.g.S k

wsin):

1. 0 ≤ S k
wsin(P1,P2) ≤ 1

2. S k
wsin(P1,P2) = 1 iff P1 = P2

3. S k
wsin(P1,P2) = S k

wsin(P2,P1)

4. If P1 ⊆ P2 ⊆ P3, then S k
wsin(P1,P3) ≤ S k

wsin(P1,P2) and S k
wsin(P1,P3) ≤ S k

wsin(P2,P3)

Proof 5 The proofs are similar to Theorem 1.

4. Numerical Examples
Example 1 There are two CPFSs P1, P2 defined on UOD Φ, denoted as follows:

P1 = (µe2πi(ν), νe2πi(µ)),P2 = (νe2πi(µ), µe2πi(ν))

where µ and ν range from 0 to 1 and satisfy the condition µ2+ν2 ≤ 1, as we can see from Fig 1c,Fig 1d,
Fig 1g,Fig 1h.

From Fig 1a,Fig 1b,Fig 1e,Fig 1f, we find that the similarity measures S1
sin, S1

cos, S1
tan, S1

cot always lie
in the range [0,1], even though the parameter µ and nu are changing. What is more, when µ = ν, the
similaritymeasuresS1

sin, S1
cos, S1

tan, S1
cot obtain themaximum value of 1. Additionally, whenµ = 1, ν =

0 or µ = 0, ν = 1, the similarity measures have the minimum value of 0. Therefore, the property 1
and property 2 are proved. The symmetry property is evidently satisfied by the presented similarity
measures, as illustrated in Fig. 1.

Example 2 There are three CPFSs, expressed as P1, P2, P3 in UOD Φ, which satisfy P1 ⊆ P2 ⊆ P3.

P1 = (0.2e2πi(0.25), 0.9e2πi(0.75))

P2 = (0.5e2πi(0.35), 0.8e2πi(0.55))

P3 = (0.6e2πi(0.45), 0.7e2πi(0.35))

Take S 1
sin as an example and we can calculate the results listed below:

S 1
sin(P1,P2) = 1− sin

π

8


|0.22 − 0.52|+ |0.92 − 0.82|+ |0.252 − 0.352|+ |0.752 − 0.552|

+|
(√

1− 0.22 − 0.92
)2

−
(√

1− 0.52 − 0.82
)2

|

+|
(√

1− 0.252 − 0.752
)2

−
(√

1− 0.352 − 0.552
)2

|


 = 0.6392

S 1
sin(P2,P3) = 1− sin

π

8


|0.52 − 0.62|+ |0.82 − 0.72|+ |0.352 − 0.452|+ |0.552 − 0.352|

+
(
|
√
1− 0.52 − 0.82

)2
−
(√

1− 0.62 − 0.72
)2

|

+|
(√

1− 0.352 − 0.552
)2

−
(√

1− 0.452 − 0.352
)2

|


 = 0.7437

S 1
sin(P1,P3) = 1− sin

π

8


|0.22 − 0.62|+ |0.92 − 0.72|+ |0.252 − 0.452|+ |0.752 − 0.352|

+|
(√

1− 0.22 − 0.92
)2

−
(√

1− 0.62 − 0.72
)2

|

+|
(√

1− 0.252 − 0.752
)2

−
(√

1− 0.452 − 0.352
)2

|


 = 0.4379
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(a) S1
sin (b) S1

cos

(c) Parameters of S1
sin (d) Parameters of S1

cos

(e) S1
tan (f) S1

cot

(g) Parameters of S1
tan (h) Parameters of S1

cot

Figure 1: The similarity measures in Example 1
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Similarly, we can obtain the results S 1
sin(P2,P1) = 0.6392 = S 1

sin(P1,P2), S 1
sin(P3,P2) = 0.7437 =

S 1
sin(P2,P3), S 1

sin(P3,P1) = 0.4379 = S 1
sin(P1,P3). Also, it is obvious that S 1

sin(P1,P3) ≤ S 1
sin(P1,P2)

and S 1
sin(P1,P3) ≤ S 1

sin(P2,P3). Thus, property 3 and property 4 of our introduced similaritymeasures
are proved.

5. Applications
In this section, we apply the trigonometric similarity measures to some decision-making problems.

5.1 Description of decision-making problem

Consider that Φ = {ϕ1, ϕ2, . . . , ϕn} is a finite UOD and there are m known patterns which arerepresented as CPFSs Qj (j = 1, 2, . . . ,m). The objective is to categorize the unknown patternswhich are denoted as CPFSs Pt (t = 1, 2, . . . , s) based on its relationship with Qj (j = 1, 2, . . . ,m).The detailed process is outlined as follows:
Step 1 Calculate the similarity between Pt (t = 1, 2, . . . , s) and Qj (j = 1, 2, . . . ,m) through theintroduced similarity measures or weighted similarity measures.
Step 2 Select the maximum similarity among the calculated results.
Step 3 Obtain the classification result of Pt.Algorithm 1 presents the corresponding official algorithmic process and the flowchart of decision-making process is shown in Fig. 2.

Algorithm 1 Algorithm for decision-making problems.
Input: A group of known patterns Qj = {Q1,Q2, . . . ,Qm};A group of unknown samples Pt = {P1,P2, . . . ,Ps};
Output: Classification of the unknown pattern Pt1: for t = 1; t ≤ s do

2: /* Step 1 */
3: for j = 1; j ≤ m do
4: Compute the similarity S (Pt,Qj) using Eq. 10- Eq. 25;
5: end for
6: /* Step 2 */
7: Select the maximum similarity among the calculated results;
8: /* Step 3 */
9: Classify the unknown sample Pt;10: end for

5.2 Application in pattern recognition

Example 3 [9] There are four known patterns Q1, Q2, Q3 and Q4 in UOD Φ, which are represented
by CPFSs as Qj = {⟨ϕi,XPj

(ϕi) · e
2πiWXQj

(ϕi) ,YPj
(ϕi) · e

2πiWYQj
(ϕi)⟩|ϕi ∈ Φ} (j = 1, 2, 3, 4) and the

unknown pattern P = {⟨ϕi,XP(ϕi) · e2πiWXP(ϕi) ,YP(ϕi) · e2πiWYP(ϕi)⟩|ϕi ∈ Φ}. The objective of the
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• Measure the similarity 

between samples and 

patterns

• Select the maximum 

similarity between 

samples and patterns

• Classify the sample to 

the pattern with the 

maximum similarity

…

(Q1, P𝑘)

(Q2, P𝑘)

(Q𝑚, P𝑘)

Q1

Q2

Q𝑚

P1

P2

P𝑠

…… …

…

(Q𝑗, P1)

(Q𝑗, P2)

(Q𝑗, P𝑠)

…

(Q1, P𝑘)

(Q2, P𝑘)

(Q𝑚, P𝑘)

Figure 2: The flowchart of the decision-making process.
problem is to determine the class that P belongs to.

Q1 = {(ϕ1, 0.2e
2πi(0.3), 0.2e2πi(0.1)), (ϕ2, 0.5e

2πi(0.4), 0.0e2πi(0.1)), (ϕ3, 0.1e
2πi(0.3), 0.5e2πi(0.4))}

Q2 = {(ϕ1, 0.4e
2πi(0.2), 0.2e2πi(0.2)), (ϕ2, 0.7e

2πi(0.8), 0.0e2πi(0.1)), (ϕ3, 0.1e
2πi(0.1), 0.5e2πi(0.3))}

Q3 = {(ϕ1, 0.4e
2πi(0.5), 0.2e2πi(0.1)), (ϕ2, 0.5e

2πi(0.7), 0.0e2πi(0.2)), (ϕ3, 0.1e
2πi(0.2), 0.5e2πi(0.3))}

Q4 = {(ϕ1, 0.6e
2πi(0.4), 0.3e2πi(0.1)), (ϕ2, 0.4e

2πi(0.3), 0.0e2πi(0.1)), (ϕ3, 0.1e
2πi(0.3), 0.5e2πi(0.4))}

P = {(ϕ1, 0.3e
2πi(0.5), 0.2e2πi(0.2)), (ϕ2, 0.6e

2πi(0.3), 0.0e2πi(0.2)), (ϕ3, 0.2e
2πi(0.1), 0.5e2πi(0.4))}

Considering the weight ω = {0.3, 0.35, 0.35}, We employ various similarity measures to calculatethe similarity between P and Qj . The computed results are depicted in Table 1, Table 2 and Fig. 3.According to the results, it is evident that P has the maximum similarity with Q1. All the introducedsimilarity measures and those used for comparison yield identical conclusions, indicating that the un-known pattern P belongs to Q1. Especially, we find that S (1)
Wu cannot compute the similarity, so it fails

to classify the unknown pattern. The reason for this is that during the logarithmic calculation in S
(1)
Wu,a zero value is encountered. Logarithmic functions are undefined for zero and negative values in thereal number domain, which led to the inability to compute the result. Therefore, its application insuch a scenario is not feasible.Furthermore, the degree of confidence(DoC) is employed to evaluate the effectiveness of varioussimilarity measures which is defined as follows:

DoC =
m∑

j=1,j ̸=j0

|S (Pj,P)− S (Pj0 ,P)| (26)
where Pj0 represents the classified result corresponding to P. It is clear that a higher DoC indicates abetter decision-making capability. In Fig. 4, we can see that the weighted similarity measures (WSimM)exhibit a higher DoC values compared to the unweighted similarity measure (SimM) which under-scores the significance of prior knowledge in the decision-making problems.
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Table 1: The results of similarity measures in Example 3.
Measures S (P,Q1) S (P,Q2) S (P,Q3) S (P,Q4) Classification

SWu 0.9117 0.8233 0.8817 0.8700 Q1

SSK 0.9117 0.8233 0.8817 0.8700 Q1

SWX 0.9533 0.9092 0.9383 0.9350 Q1

SG 0.9167 0.8233 0.8817 0.8833 Q1

SY C 0.9117 0.8233 0.8817 0.8700 Q1

S
(1)
Wu NaN NaN NaN NaN NaN
S 1
sin 0.8618 0.7315 0.8177 0.7984 Q1

S 2
sin 0.8029 0.6020 0.7309 0.6946 Q1

S 1
cos 0.9895 0.9445 0.9716 0.9736 Q1

S 2
cos 0.9777 0.8632 0.9323 0.9398 Q1

S 1
tan 0.9305 0.8589 0.9061 0.8972 Q1

S 2
tan 0.9000 0.7725 0.8550 0.8406 Q1

S 1
cot 0.8707 0.7653 0.8371 0.8180 Q1

S 2
cot 0.8203 0.6597 0.7670 0.7332 Q1

Note: Bold denotes the optimal solution.

Table 2: The results of weighted similarity measures in Example 3.
Measures S (P,Q1) S (P,Q2) S (P,Q3) S (P,Q4) Classification
S 1
wsin 0.8643 0.7289 0.8125 0.8053 Q1

S 2
wsin 0.8077 0.5983 0.7229 0.7035 Q1

S 1
wcos 0.9899 0.9430 0.9703 0.9753 Q1

S 2
wcos 0.9788 0.8590 0.9292 0.9430 Q1

S 1
wtan 0.9317 0.8574 0.9034 0.9008 Q1

S 2
wtan 0.9026 0.7695 0.8505 0.8455 Q1

S 1
wcot 0.8729 0.7635 0.8327 0.8237 Q1

S 2
wcot 0.8244 0.6570 0.7605 0.7403 Q1

Note: Bold denotes the optimal solution.
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Figure 3: Results of different similarity measures in Example 3.
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Figure 4: The DoC of different measures in Example 3.
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5.3 Application in medical diagnosis

Example 4 [36]Consider a medical diagnosis scenario for a patient P exhibiting symptoms
Φ = {Temperature(ϕ1),Headache(ϕ2), Stomach pain(ϕ3), Cough(ϕ4)}. The characteristics of symp-
toms for potential medical disease which are represented as Pj = {Viral fever(P1),Malaria(P2),
Typhoid(P3), Stomach problem(P4)}are represented through the use of CPFSs. The complex Pythagorean
fuzzy relationship from symptoms to disease and patient is depicted by CPFSs in Table 3.

Table 3: CPFSs for disease and patient in Example 4.
ϕ1 ϕ2 ϕ3 ϕ4

P1 (
√
0.8e2πi

√
0.7,

√
0.1e2πi

√
0.2) (

√
0.9e2πi

√
0.6,

√
0.1e2πi

√
0.2) (

√
0.7e2πi

√
0.8,

√
0.2e2πi

√
0.1) (

√
0.8e2πi

√
0.7,

√
0.2e2πi

√
0.1)

P2 (
√
0.6e2πi

√
0.4,

√
0.1e2πi

√
0.5) (

√
0.4e2πi

√
0.9,

√
0.5e2πi

√
0.1) (

√
0.5e2πi

√
0.5,

√
0.3e2πi

√
0.3) (

√
0.4e2πi

√
0.9,

√
0.5e2πi

√
0.1)

P3 (
√
0.3e2πi

√
0.8,

√
0.3e2πi

√
0.1) (

√
0.8e2πi

√
0.3,

√
0.1e2πi

√
0.6) (

√
0.7e2πi

√
0.6,

√
0.2e2πi

√
0.2) (

√
0.2e2πi

√
0.7,

√
0.8e2πi

√
0.2)

P4 (
√
0.5e2πi

√
0.3,

√
0.4e2πi

√
0.6) (

√
0.3e2πi

√
0.1,

√
0.6e2πi

√
0.3) (

√
0.8e2πi

√
0.3,

√
0.1e2πi

√
0.5) (

√
0.1e2πi

√
0.3,

√
0.6e2πi

√
0.5)

P (
√
0.8e2πi

√
0.6,

√
0.1e2πi

√
0.2) (

√
0.9e2πi

√
0.7,

√
0.1e2πi

√
0.2) (

√
0.7e2πi

√
0.8,

√
0.2e2πi

√
0.1) (

√
0.6e2πi

√
0.5,

√
0.2e2πi

√
0.4)

Table 4: The results of similarity measures between P and Pt in Exam-ple 4.
Measures S (P,P1) S (P,P2) S (P,P3) S (P,P4) Classification

SWu 0.9125 0.7000 0.7250 0.6000 P1

SSK 0.9125 0.7000 0.7250 0.6000 P1

SWX 0.9438 0.7563 0.7750 0.6625 P1

SG 0.9125 0.7000 0.7250 0.6000 P1

SY C 0.9125 0.7000 0.7250 0.6000 P1

S
(1)
Wu 0.9254 0.7190 0.7649 0.6633 P1

S 1
sin 0.8651 0.5474 0.5876 0.4230 P1

S 2
sin 0.8083 0.4493 0.3968 0.2972 P1

S 1
cos 0.9794 0.8883 0.8933 0.7960 P1

S 2
cos 0.9666 0.8245 0.7637 0.7028 P1

S 1
tan 0.9306 0.7595 0.7789 0.6716 P1

S 2
tan 0.9006 0.6952 0.6482 0.5843 P1

S 1
cot 0.8792 0.6141 0.6480 0.5144 P1

S 2
cot 0.8302 0.5373 0.4938 0.4157 P1

Note: Bold denotes the optimal solution.
We consider the weight vector ω = {0.35, 0.25, 0.2, 0.2}, then the calculated results are shown in

Table 4, Table 5 and Fig. 5. According to the results, we find that the value of S (P,P1) is the largest
across all the introduced measures. This indicate that the patient P is diagnosis with Viral fever (P1).
The DoC values of different measures are depicted in Fig. 6. We can observe that the weighted sim-
ilarity measures (WSimM) demonstrate better performance in comparison to the unweighted simi-
larity measures (SimM), highlighting the significance of incorporating relevant prior knowledge into
decision-making scenarios. What is more, the similarity measures S 2

wsin and S 4
wsin especially exhibit a

high DoC value, which implies that these similarity measures are the most dependable in the medi-
cal diagnosis problems. This will assist decision-makers in identifying the most trustworthy decisions
within this specific context.
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Table 5: The results of weighted similarity measures between P and Pt inExample 4.
Measures S (P,P1) S (P,P2) S (P,P3) S (P,P4) Classification
S 1
wsin 0.8764 0.5544 0.5726 0.4196 P1

S 2
wsin 0.8153 0.4560 0.3820 0.3092 P1

S 1
wcos 0.9829 0.8918 0.8887 0.7941 P1

S 2
wcos 0.9708 0.8286 0.7575 0.7129 P1

S 1
wtan 0.9366 0.7637 0.7708 0.6695 P1

S 2
wtan 0.9048 0.6994 0.6402 0.5932 P1

S 1
wcot 0.8883 0.6195 0.6358 0.5118 P1

S 2
wcot 0.8350 0.5425 0.4826 0.4252 P1

Note: Bold denotes the optimal solution.

Figure 5: Results of different measures in Example 4.
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Figure 6: The DoC of different measures in Example 4.

6. Conclusions
In this paper, we present a set of similarity measures and weighted similarity measures based ontrigonometric functions, including sine function, cosine function, tangent function and cotangent func-tion. Then, We confirm that the proposed measures fulfill essential properties and exhibit its accuracyand efficacy through extensive numerical experiments. Furthermore, we apply these trigonometricsimilarity measures to pattern recognition and medical diagnosis. The results demonstrate that ourproposed similarity measures are capable of achieving favorable outcomes in these applications. Inthe future, we can present the method of adaptive weights based on the proposed similarity measuresto cope with different decision-making contexts. Additionally, trigonometric similarity measures areexpected to merit consideration for application in interval-valued Pythagorean fuzzy sets and complexinterval-valued Pythagorean fuzzy sets which will boost the precision of outcomes by express data ininterval format, particularly when handling uncertain data, and carries significant implications for bothresearch endeavors and practical implementations.
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