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This study evaluates solar panel installation decisions by applying a hybrid fuzzy 
multi-criteria decision-making (FMCDM) methodology, integrating the Fuzzy 
Logarithm Methodology of Additive Weights (F-LMAW) for criterion weighting and 
the Fuzzy Alternative Ranking Technique based on Adaptive Standardized Intervals 
(F-ARTASI) for ranking alternatives. The primary aim is to identify and prioritize 
critical criteria influencing solar panel installation and optimize the decision-making 
process to propose sustainable and strategic solutions. Eighteen comprehensive 
criteria-ranging from installation costs and energy efficiency to environmental impact 
and public acceptance-were analyzed across five potential locations in Turkey: Gürün, 
Kangal, Divrigi, Altınyayla, and Imranlı. 
The findings highlight that the ranking of alternatives remains consistent under 
varying F-Bonferroni mean aggregation operator parameters (𝒑 and 𝒒), 
demonstrating the robustness and reliability of the adopted approach. Sensitivity 
analysis confirmed that the established criteria play a decisive role in the ranking, 
with Gürün consistently ranked first across all scenarios. Validation of the F-ARTASI 
results against established FMCDM methods, including F-TOPSIS, F-CoCoSo, F-
MARCOS, F-WASPAS, and F-RAWEC, showed high consistency, with Spearman 
Correlation Coefficients (SCC) averaging 0.90. This reinforces the methodological 
reliability of the proposed model and underscores its applicability in real-world 
energy management scenarios. 
The study provides valuable insights for decision-makers in optimizing solar energy 
projects, emphasizing the importance of systematic and analytical frameworks. 
Moreover, the consistent alignment of rankings across multiple methods suggests a 
flexible and reliable decision-making approach that is adaptable to different contexts. 
While the findings offer robust guidance for solar panel installations, the study 
acknowledges limitations in data generalizability and calls for further exploration into 
evolving criteria, such as emerging technologies and climate-specific conditions. 
Future research should focus on integrating advanced FMCDM techniques and 
expanding the framework to broader sustainable energy initiatives. 
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1. Introduction 
 

The growing demand for sustainable energy solutions globally has led to significant 
developments in renewable energy technologies. These developments have made energy systems 
more environmentally friendly, economical and efficient, and have contributed to reducing 
dependence on fossil fuels. Solar energy, one of the renewable energy sources, plays an important 
role in the global energy transition as it offers solutions to critical problems such as combating climate 
change, energy security, and economic sustainability [1]. Solar energy stands out as one of the 
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cornerstones of the transition to clean energy systems with its low greenhouse gas emissions, 
environmentally friendly structure and cost-effectiveness. Solar panel installations provide high 
efficiency in energy production and scalability for a variety of applications, while also offering long-
term benefits from an economic point of view [2-3]. 

However, it is of great importance to make the right decisions in order to fully exploit the 
potential of solar energy. Solar panel installation is a process that is shaped not only by economic 
analyses and technical requirements, but also by many different factors such as environmental 
impacts, social acceptance, and local conditions [4-5]. In order to increase the effectiveness of solar 
energy systems at local and regional levels, many criteria need to be considered. These 
multidimensional assessments require complex decision-making processes that also involve various 
perspectives of different stakeholders and experts [6]. Therefore, it is critical to use more analytical 
and systematic approaches in decision-making processes in order to achieve optimal results [7]. 

In this regard, this study uses FMCDM methods to address the complexities in the evaluation of 
solar panel installations. In particular, the study uses the F-LMAW method to determine the criterion 
weights and the F-ARTASI method to rank the alternatives. These methods allow decision-makers to 
better manage uncertainties and subjective perceptions, while also increasing the consistency and 
reliability of decision processes. 

The main objectives of this research are as follows:  

✓ Determining the basic criteria affecting solar panel installation decisions and prioritizing 
these criteria.  

✓ Determination of criterion weights with the F-LMAW method and ranking of solar panel 
installation alternatives with the F-ARTASI method. 

✓ Providing decision support to policymakers, stakeholders and industry practitioners by 
providing strategic insights to optimize solar panel installations. 

The study provides a scientific and analytical framework for the evaluation of solar energy projects, 
allowing decision-makers to make healthier and more efficient choices about sustainable energy 
solutions. As a result, this research aims to improve decision-making processes in renewable energy 
investments, guide them with systematic and reliable decision-making methods, and ensure more 
efficient implementation of clean energy projects such as solar energy. This systematic approach to 
solar panel installations will make significant contributions to the field of sustainable energy and 
allow for the development of more effective energy management strategies in the long term. 

Although the existing literature discusses the MCDM methods used in solar panel installation 
and their effectiveness, most studies are limited to a single method in the process of weighting 
certain criteria or ranking alternatives. In addition, sensitivity analysis of the methods used or 
validation of the results with other methods are not sufficiently included. 

In this context, in particular: 

✓ Use of the Fuzzy LMAW method in criteria weighting and subjecting the weights obtained 
with this method to a detailed sensitivity analysis, 

✓ Ranking the alternatives with the Fuzzy ARTASI method and verifying this ranking in 
comparison with other MCDM methods in the literature, 
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✓ Performing a detailed sensitivity analysis on the Bonferroni mean aggregation operator 
parameters 

represents an area that has not been addressed in existing studies. The study aims to fill this gap in 
the literature not only to optimize solar panel installation decisions, but also to increase the reliability 
of these decisions and to provide strategic insights into energy management processes. 

2. Literature Review 

In this section, some studies in the literature on site selection of solar energy projects, LMAW 
method and ARTASI method will be examined. The successful implementation of solar energy 
projects depends on choosing the right location. For this reason, studies to determine the most 
appropriate areas by using various decision-making methods gain importance. MCDM methods such 
as LMAW and ARTASI contribute to the ranking of alternatives by analyzing the effect of different 
criteria. In this section, some of the studies on each method will be discussed in detail and how these 
methods can be integrated into site selection processes in solar energy projects will be discussed. 

2.1 Studies on Site Selection in Solar Energy Projects 

Solar energy has gained an important place among sustainable energy sources and has 
become a prominent area in renewable energy investments, especially in recent years. The 
installation of solar power plants requires the right location selection in order to increase energy 
production efficiency, ensure environmental sustainability and maximize economic returns. In this 
context, MCDM methods emerge as effective tools used in solar power plant site selection decisions. 
The studies in the literature have contributed to this process with different methods and criteria and 
presented various application examples. 

In site selection analysis, studies carried out with multi-criteria decision-making models have 
an important place. Hosouli and Hassani [8] used the Fuzzy Analytical Hierarchy Process (FAHP) 
method in determining the most suitable locations for solar power plant installation in the UK. In this 
study, meteorological factors such as temperature, annual sunshine duration and humidity, as well 
as spatial factors such as roads and proximity to the power grid, were also taken into account. In this 
study, in which a MATLAB-based program was also used, a hierarchy was created between the criteria 
to support site selection decisions and Torquay was determined as the most suitable place. Wang et 
al., [9] proposed an integrated multi-criteria decision-making model in determining the optimal 
location for solar power plant installation in Vietnam. In the study, 46 locations were evaluated with 
DEA, criterion weights were calculated with FAHP and ranking was made with TOPSIS. The results 
showed that Binh Thuan is the most suitable region. The research contributes to the literature by 
offering a flexible approach that can be applied in an environment of uncertainty in renewable energy 
projects. Shehab et al., [6] identified suitable areas for solar power plants in the Erbil region of Iraq 
and compared MCDM methods such as the Analytical Hierarchy Process (AHP), TOPSIS, and SAW. 
The study created conformity maps by effectively using GIS and highlighted the differences between 
these methods. It has been determined that the SAW method gives more consistent results than 
other methods. Deveci et al., [10] proposed the Fuzzy Logarithmic Weight Estimation method to 
determine the criterion weights for solar power plant site selection. Bouraima et al., [4] developed 
an integrated decision support system for Photovoltaic (PV) solar energy systems and combined 
SWOT analysis and MCDM methods. In this study, especially in cases of uncertain and incomplete 
information, the IVIF-CoCoSo method was used and the criteria were prioritized. The study made 
recommendations on reducing environmental impacts and improving economic strategies. In 
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another study on the Baltic region, Saraji et al., [11] developed a two-stage model focused on 
efficiency and sustainability. In the first stage, regions with high potential were determined by Data 
Envelopment Analysis (DEA), and in the second stage, these regions were ranked by CRITIC-TOPSIS 
method. The results showed that the energy potentials of the identified regions were compatible 
with the Global Solar Atlas.  

These studies in the literature emphasize the importance of MCDM methods used in site selection 
decisions in solar energy projects and reveal how the evaluation of different criteria together 
contributes to the decision processes. These researches, which are carried out in different countries 
and methods, provide valuable references for the planning processes of solar energy projects. 

2.2 Studies on the LMAW Method 

In recent years, MCDM methods have been among the important tools for solving complex 
decision problems. In this context, LMAW has come to the fore as an effective method for 
determining criterion weights, especially in cases involving uncertainty and turbidity. The 
applications of the LMAW method in different disciplines emphasize the flexibility of the 
methodology and its effectiveness in decision-making processes. Some studies based on the LMAW 
method in the literature are presented below: 

Nasution et al., [12] assessed the level of readiness of governments for AI using the fuzzy 
LMAW method integrated with the Schweizer-Sklar-weighted framework. The study used geometric 
and non-arithmetic functions instead of traditional arithmetic averages to more accurately analyze 
countries' rankings in the Oxford Insights AI Readiness Index. Countries were clustered according to 
observed criteria and in-depth insights on AI readiness were presented. This study demonstrates the 
accuracy and categorization capabilities of the LMAW method. Karakuş [13] used the Fuzzy LMAW 
method to evaluate the ecotourism potential for Sivas province. In the study, the Fuzzy LMAW 
method integrated with GIS was used to weight 24 different criteria. The calculations of the 
Ecotourism Potential Index (EPI) revealed different levels of ecotourism suitability in the study area. 
The results were supported by sensitivity analysis, which confirmed the validity and applicability of 
the proposed framework. Ecer et al., [14] integrated fuzzy Z-numbers and LMAW method in the 
selection of sustainable cold supply chain suppliers for the Indian healthcare sector. In the research, 
the decision-making process was analyzed on the basis of economic, environmental and technical 
criteria and job creation, cost-effectiveness and the use of renewable resources were determined as 
the most important criteria. The combination of LMAW and TOPSIS methods has provided an 
effective approach to modeling ambiguous information. Puška et al., [15] applied the fuzzy-rough 
LMAW method in the prioritization of devices to be used in the management of health waste in 
Bosnia and Herzegovina. In the study, the importance levels of the criteria were determined and air 
emissions and annual usage costs were identified as the most critical factors. The LMAW method 
combined with the fuzzy-rough CoCoSo method in the sequencing of the devices provided a reliable 
solution in terms of consistency and validity of the results. Haseli et al., [16] integrated the LMAW 
method with the MARCOS method for the evaluation of land use projects supported by green 
finance. In this study, four different alternatives were evaluated based on economic, environmental, 
technical and social criteria. The findings revealed that the most appropriate project should be 
inclusive, economically and environmentally balanced, and the proposed method has made 
significant contributions to the literature. Puška et al., [17] combined the LMAW method with the 
newly developed RAWEC (Ranking Alternatives with Weights of Criterion) method in the selection of 
agricultural distribution center locations in Bosnia and Herzegovina. The LMAW method was used as 
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an effective tool in the calculation of criterion weights, and the consistency of the results obtained in 
the ranking of alternatives with the RAWEC method was confirmed by sensitivity analysis. This study 
shows that the LMAW method stands out for its simplicity and ease of implementation. 

These studies based on the F-LMAW method emphasize the applicability of the methodology 
in different fields and its contributions to decision-making processes. The method's effectiveness in 
managing uncertainties and criterion weighting makes it a powerful tool for future MCDM problems. 

2.3 Studies on the ARTASI Method 

The ARTASI method is a method developed to ensure the ranking of alternatives in multi-
criteria group decision-making problems. This method is notable for its capacity to process 
uncertainties and subjective assessments of decision-makers. The ARTASI method uses standardized 
ranges to manage mismatches of expert opinions, allowing flexibility in the ordering of alternatives. 
This methodology is especially preferred in complex and uncertain decision-making processes. 

Today, the ARTASI method is applied in different sectors and integrated into various decision-making 
problems. The SF-LODECI-ARTASI model developed by Yalçın et al., [18] shows the effectiveness of 
the ARTASI method in ranking the importance of the criteria and alternatives in the selection of 
commercial insurance. This model addresses uncertainties with soft clusters, while offering a more 
flexible approach to the ranking process. Similarly, Pamučar et al., [19] used the ARTASI method in 
the selection of big data platforms, providing decision-makers with a practical decision support tool 
on criterion weights and alternative ranking. The PFS-CIMAS-ARTASI model developed by Kara et al., 
[20] is used in the selection of digital platforms in the field of human resources management. In this 
study, the alternative ranking power of the ARTASI method was tested by calculating the importance 
of the criteria with Picture Fuzzy Sets (PFS). The study revealed that the PFS-CIMAS-ARTASI model is 
powerful and feasible, as well as validated by different sensitivity analyses. 

The advantages of the ARTASI method are especially evident in decision-making processes 
where uncertainty is intense and expert opinions are incompatible. Unlike traditional ranking 
methods, ARKASI allows for more accurate and flexible rankings by using adaptive standard ranges 
between the scores given by experts. This is a significant benefit, especially in situations where there 
are a large number of criteria and alternatives. The ARTASI method allows decision-makers to 
manage uncertainties and make rankings between alternatives more precisely. 

3. Methodology 

Solar panel installation is a critical factor that has a direct impact on the efficiency and 
sustainability of energy systems. Therefore, identifying appropriate strategies is vital to not only 
maximize energy production but also to minimize environmental and economic risks. This study aims 
to effectively optimize the decision-making process of solar panel installations, to make a systematic 
ranking by evaluating the necessary criteria in this context. In the study, the criteria will be weighted 
and alternatives will be listed by using F-LMAW and F-ARTASI methods.  

In this context, the F-LMAW method will be used to calculate the weights of the criteria, and the F-
Bonferroni sum operator will be used to combine expert opinions. In the final stage, the F-ARTASI 
method will be applied to compare solar panel installation alternatives and determine the most 
suitable option. The methodological framework shown in Figure 1 is based on the integration of 
expert knowledge, prioritization of criteria and ranking of strategic alternatives. 



Journal of Intelligent Decision Making and Information Science 

Volume 1, (2024) 65-94 

70 
 
 

 

 

Fig. 1. F-Bonferroni mean aggregation-based F-LMAW and F-ARTASI framework 

This study, the process steps of which are given in Figure 1, will present a comprehensive approach 
to the selection of appropriate strategies for the effective evaluation and implementation of solar 
panel installations. By calculating the weights of the determined criteria and combining the opinions 
of experts, the alternatives will be compared in detail and the most appropriate solution will be 
proposed. In this context, the outputs of the study will contribute to sustainable energy targets and 
provide strategic guidance to decision-makers. 

3.1 Working Area 

The Province of Sivas, situated in the Upper Kızılırmak Region of Central Anatolia, is the 
second-largest province in Turkey by land area, encompassing approximately 27386 km². 
Geographically, Sivas is located between the eastern longitudes of 36° and 39° and the northern 
latitudes of 38° and 41°, as illustrated in Figure 2. 
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Fig. 2. Work area location 

Since Turkey is located between the 360-420 northern parallels and the 260-450 eastern meridians, it 
is well located with 2737 hours of sunshine per year 7,5 hours of sunshine per day and an average 
annual solar energy amount of 1,527 kWh/m². Sivas in Figure 2 is the 45th most sunbathing province 
in Turkey with a total of 2653 hours of sunshine per year, while it ranks 37th in terms of radiation 
value [21]. 

3.2. Fuzzy Sets 

Zadeh [22] proposed the fuzzy idea to address uncertainty in variables and parameters. 
Triangular fuzzy numbers (TFNs) have been used in various studies to turn qualitative assertions into 
quantitative ones. A TFN represents each figure with three numerals. The first, second, and third 
integers that define a fuzzy figure reflect the lowest, most, and highest potential values, respectively 

𝐴̃(𝑙, 𝑚, 𝑢). Eq. (1) defines the triangle type membership function for fuzzy numbers. 

𝜇𝐴(𝑥) =

{
 
 

 
 
0,                  𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
, 𝑙 ≤ 𝑥 ≤ 𝑚

𝑢 − 𝑥

𝑢 −𝑚
,𝑚 ≤ 𝑥 ≤ 𝑢

0,                     𝑥 > 𝑢

                                                                                                                        (1) 

TFNs can be transformed into crisp values by applying the center of gravity defuzzification technique 
represented by Eq. 2: 

𝐴 =
𝑙 + 4𝑚 + 𝑢

6
                                                                                                                                                 (2) 
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3.3 Fuzzy Bonferroni Aggregation Operator 

Aggregation operators, which are mathematical functions, aggregate group members' 
individual preferences, evaluations, or judgments to form a common conclusion throughout the 
group decision-making process. The Bonferroni aggregation operator is based on fuzzy triangular 
numbers (TrFNs) operators and the operation of the TrFN. The Bonferroni Mean (TrFNBM) operator 
is provided by Eq. (3) Pamučar et al., [23]. 

𝜑̃𝑗 = (𝜑𝑗
𝑙 , 𝜑𝑗

𝑚, 𝜑𝑗
𝑢), 𝑗 = (1,2, … , 𝑛) be a collection of TrFNs, then the TrFNBM operator, 

𝑇𝑟𝐹𝑁𝐵𝑀𝑝,𝑞,𝜌(𝜑1, 𝜑2, … , 𝜑𝑛) = (
1

𝑛(𝑛−1)
∑ 𝜑𝑖

𝑝
𝜑𝑗
𝑞𝑛

𝑖,𝑗=1
𝑖≠𝑗

)

1

𝑝+𝑞

= ((
1

𝑛(𝑛−1)
∑ (𝜑𝑖

𝑙)
𝑝
∗𝑛

𝑖,𝑗=1
𝑖≠𝑗

(𝜑𝑗
𝑙)
𝑞
)

1

𝑝+𝑞

, (
1

𝑛(𝑛−1)
∑ (𝜑𝑖

𝑚)𝑝 ∗ (𝜑𝑗
𝑚)

𝑞𝑛
𝑖,𝑗=1
𝑖≠𝑗

)

1

𝑝+𝑞

, (
1

𝑛(𝑛−1)
∑ (𝜑𝑖

𝑢)𝑝 ∗ (𝜑𝑗
𝑢)
𝑞𝑛

𝑖,𝑗=1
𝑖≠𝑗

)

1

𝑝+𝑞

)                         (3)    

𝑛 is the number of experts, 𝑝, 𝑞 ≥ 0. 

3.4. F-LMAW Method for Prioritization of Criteria 

LMAW, which is employed to rank the decision alternatives and to find the weights of the 
evaluation criteria, was developed by Pamučar et al., [24]. The processing steps of the method are as 
follows Božanić et al., [25]: 

Step 1: Prioritising the criteria 

The identified experts prioritise the criteria using linguistic terms given in the fuzzy scale in Table 1. 

Table 1.  
Prioritization Scale 

 

Source: Božanić et al., [25] 

Using the fuzzy linguistic scale, significant values are assigned to the criteria of greater importance, 

and conversely. For each specialist, the priority vectors are obtained individually 𝑃̃𝑒 =

(𝛾̃𝐶1
𝑒 , 𝛾̃𝐶2

𝑒 , … , 𝛾̃𝐶𝑛
𝑒 ). 

Step 2: Determination of the fuzzy absolute anti-ideal point (𝛾̃𝐴𝐼𝑃) 

Fuzzy Linguistic Descriptive Abbreviation Fuzzy Number 
Absolutely low AL (1,1,1) 

Very low VL (1,1.5,2) 
Low L (1.5,2,2.5) 

Medium M (2,2.5,3) 
Equal E (2.5,3,3.5) 

Medium-high MH (3,3.5,4) 
High H (3.5,4,4.5) 

Very high VH (4,4.5,5) 
Absolutely high AH (4.5,5,5) 
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This fuzzy number, which is smaller than the smallest value in the whole collection of priority vectors, 
is established by experts. Those who brought the method to the literature used it as 𝛾̃𝐴𝐼𝑃 = (0.5, 0.5, 
0.5). 

Step 3: Determination of the fuzzy relationship vector (𝑅̃𝑒) 

The connection between the components of the priority vector and the exact opposite ideal point is 
computed using Eq. (4). 

𝜂̃𝐶𝑛
𝑒 = (

𝛾̃𝐶𝑛
𝑒

𝛾̃𝐴𝐼𝑃
) = (

𝛾𝐶𝑛
(𝑙)𝑒

𝛾
𝐴İ𝑃

(𝑟)
,
𝛾𝐶𝑛
(𝑚)𝑒

𝛾
𝐴İ𝑃

(𝑚)
,
𝛾𝐶𝑛
(𝑟)𝑒

𝛾
𝐴İ𝑃

(𝑙)
)                                                                                             (4) 

Step 4: Computing the vectors (𝑤𝑗
𝑒) of weight coefficients 

Eq. (5) is utilized to acquire the fuzzy score of the weight coefficients of the criteria of every expert. 

𝑤̃𝑗
𝑒 = (

𝑙𝑛(𝜂̃𝐶𝑛
𝑒 )

𝑙𝑛(∏ 𝜂̃𝐶𝑛
𝑒𝑛

𝑗=1 )
) = (

𝑙𝑛(𝜂𝐶𝑛
(𝑙)𝑒)

𝑙𝑛 (∏ 𝜂𝐶𝑛
(𝑟)𝑒𝑛

𝑗=1 )
,

𝑙𝑛(𝜂𝐶𝑛
(𝑚)𝑒)

𝑙𝑛 (∏ 𝜂𝐶𝑛
(𝑚)𝑒𝑛

𝑗=1 )
,

𝑙𝑛(𝜂𝐶𝑛
(𝑟)𝑒)

𝑙𝑛 (∏ 𝜂𝐶𝑛
(𝑙)𝑒𝑛

𝑗=1 )
)                  (5) 

The weight factors of all experts are acquired in the shape of 𝑤𝑗
𝑒 = (𝑤̃1

𝑒 , 𝑤̃2
𝑒, … , 𝑤̃𝑛

𝑒)𝑇. 

Step 5: Calculating combined fuzzy vectors of weight coefficients.  

The combined fuzzy vectors of the weight coefficients are determined by utilizing the Bonferroni 
aggregator relying on Eq. (6) 𝑤𝑗 = (𝑤̃1, 𝑤̃2, … , 𝑤̃𝑛)

𝑇. 

𝑤̃𝑗 =

(

 
 1

𝑘(𝑘 − 1)
∑ 𝑤̃𝑖

𝑒(𝑝)
𝑤̃𝑗
𝑒(𝑞)

𝑘

𝑖,𝑗=1
𝑖≠𝑗 )

 
 

1
𝑝+𝑞

= 

{(
1

𝑘(𝑘−1)
∑ 𝑤𝑖

(𝑙𝑒)𝑝𝑤𝑗
(𝑙𝑒)𝑞𝑘

𝑖,𝑗=1
𝑖≠𝑗

)

1

𝑝+𝑞

, (
1

𝑘(𝑘−1)
∑ 𝑤𝑖

(𝑚𝑒)𝑝𝑤𝑗
(𝑚𝑒)𝑞𝑘

𝑖,𝑗=1
𝑖≠𝑗

)

1

𝑝+𝑞

, (
1

𝑘(𝑘−1)
∑ 𝑤𝑖

(𝑟𝑒)𝑝𝑤𝑗
(𝑟𝑒)𝑞𝑘

𝑖,𝑗=1
𝑖≠𝑗

)

1

𝑝+𝑞

}   

(6) 

Step 6: Computation of the ultimate value of the weighted criteria. 

The final values of the weight coefficients of the criteria are obtained through clarification based on 
𝑤𝑗 = (𝑤1, 𝑤2, … , 𝑤𝑛)

𝑇 , as illustrated in Eq. (2). 

3.5 F-ARTASI Method for Ranking Alternatives 

Pamučar et al., [19] presented the ARTASI technique for ranking alternatives (crisp version). 
In this study, the ARTASI technique is fuzzified using triangular fuzzy numbers. 
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Step 1. Construction of the initial decision matrix 

The identified experts evaluate the alternatives using the linguistic terms given in the fuzzy scale in 
Table 1. 

The initial decision matrix (∆̃) is obtained using Eq. (7). 

∆̃= [℘̃𝑖𝑗]𝑘𝑥𝑛 = [
℘̃11 ⋯ ℘̃1𝑛
⋮ ⋱ ⋮
℘̃𝑘1 ⋯ ℘̃𝑘𝑛

]                                                                                                                 (7) 

℘̃𝑖𝑗 = (℘𝑖𝑗
𝑙 , ℘𝑖𝑗

𝑚, ℘𝑖𝑗
𝑢 ) represents fuzzy value of criterion 𝑗. in alternative 𝑖. 

Step 2. Calculating absolute minimum and absolute maximum values 

The absolute maximum and absolute minimum values of the  jth criterion are obtained by Eqs. (8) and 
(9) respectively. 

℘̃𝑗
𝑚𝑎𝑥 = ((𝑚𝑎𝑥

1≤𝑖≤𝑘
℘𝑖𝑗
𝑙 + √𝑚𝑎𝑥

1≤𝑖≤𝑘
℘𝑖𝑗
𝑙𝑘
) , (𝑚𝑎𝑥

1≤𝑖≤𝑘
℘𝑖𝑗
𝑚 + √𝑚𝑎𝑥

1≤𝑖≤𝑘
℘𝑖𝑗
𝑚𝑘 ) , (𝑚𝑎𝑥

1≤𝑖≤𝑘
℘𝑖𝑗
𝑢 + √𝑚𝑎𝑥

1≤𝑖≤𝑚
℘𝑖𝑗
𝑢𝑘 ))    (8) 

℘̃𝑗
𝑚𝑖𝑛 = ((𝑚𝑖𝑛

1≤𝑖≤𝑘
℘𝑖𝑗
𝑙 − √𝑚𝑖𝑛

1≤𝑖≤𝑘
℘𝑖𝑗
𝑙𝑘
) , (𝑚𝑖𝑛

1≤𝑖≤𝑘
℘𝑖𝑗
𝑚 − √𝑚𝑖𝑛

1≤𝑖≤𝑘
℘𝑖𝑗
𝑚𝑘 ) , (𝑚𝑖𝑛

1≤𝑖≤𝑘
℘𝑖𝑗
𝑢 − √𝑚𝑖𝑛

1≤𝑖≤𝑘
℘𝑖𝑗
𝑢𝑘 ))      (9) 

𝑘 denotes the number of alternatives, whereas ℘̃𝑗
𝑚𝑎𝑥 and ℘̃𝑗

𝑚𝑖𝑛 represent the absolute maximum 

and absolute minimum values, respectively. 

Step 3. Standardizing the initial decision matrix 

The architects of the method suggested standardizing the criteria values to the [𝛹(𝑙), 𝛹(𝑢)] ([1, 100]) 

criteria range for models with more than ten alternatives. For models with scales of 10 and less than 
10, they said that smaller criterion interval thresholds could be adopted. 

Step 3.1. In the first step, using Eq. (10), the initial decision matrix's elements are standardized as 
follows: 

∆̃𝑁= [𝜙̃𝑖𝑗]𝑘𝑥𝑛

=

(

 
 
 
 
 
 

𝛹(𝑢) −𝛹(𝑙)

(℘𝑗
𝑚𝑎𝑥)

𝑙
− (℘𝑗

𝑚𝑖𝑛)
𝑙℘𝑗

𝑙 +
(℘𝑗

𝑚𝑎𝑥)
𝑙
. 𝛹(𝑙) − (℘𝑗

𝑚𝑖𝑛)
𝑙
. 𝛹(𝑢)

(℘𝑗
𝑚𝑎𝑥)

𝑙
− (℘𝑗

𝑚𝑖𝑛)
𝑙 ,

𝛹(𝑢) −𝛹(𝑙)

(℘𝑗
𝑚𝑎𝑥)

𝑚
− (℘𝑗

𝑚𝑖𝑛)
𝑚℘𝑗

𝑚 +
(℘𝑗

𝑚𝑎𝑥)
𝑚
. 𝛹(𝑙) − (℘𝑗

𝑚𝑖𝑛)
𝑚
. 𝛹(𝑢)

(℘𝑗
𝑚𝑎𝑥)

𝑚
− (℘𝑗

𝑚𝑖𝑛)
𝑚 ,

𝛹(𝑢) −𝛹(𝑙)

(℘𝑗
𝑚𝑎𝑥)

𝑢
− (℘𝑗

𝑚𝑖𝑛)
𝑢℘𝑗

𝑢 +
(℘𝑗

𝑚𝑎𝑥)
𝑢
. 𝛹(𝑙) − (℘𝑗

𝑚𝑖𝑛)
𝑢
. 𝛹(𝑢)

(℘𝑗
𝑚𝑎𝑥)

𝑢
− (℘𝑗

𝑚𝑖𝑛)
𝑢

)

 
 
 
 
 
 

                                           (10) 
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Step 3.2. If the criterion is of type min, the replacement of the values in the ∆̃𝑁= [𝜙̃𝑖𝑗]𝑘𝑥𝑛 matrix by 

the reverse sorting algorithm is performed using Eq. (11). 

𝜉𝑖𝑗 = −𝜙̃𝑖𝑗 + max
1≤𝑖≤𝑘

𝜙̃𝑖𝑗 + min
1≤𝑖≤𝑘

𝜙̃𝑖𝑗 =

(

 

−𝜙𝑗
𝑙 + max

1≤𝑖≤𝑘
𝜙𝑗
𝑙 + min

1≤𝑖≤𝑘
𝜙𝑗
𝑙 ,

−𝜙𝑗
𝑚 + max

1≤𝑖≤𝑘
𝜙𝑗
𝑚 + min

1≤𝑖≤𝑘
𝜙𝑗
𝑚 ,

−𝜙𝑗
𝑢 + max

1≤𝑖≤𝑘
𝜙𝑗
𝑢 + min

1≤𝑖≤𝑘
𝜙𝑗
𝑢
)

                                            (11) 

If the criteria is of the max type, 𝜉𝑖𝑗 = 𝜙̃𝑖𝑗 is assumed. 

Step 4. Determine the degree of usefulness of alternatives in relation to the ideal and anti-ideal 
values. 

Step 4.1. Using Eq. (12), the degree of usefulness is determined in relation to the ideal value. 

𝜗̃𝑖𝑗
+ =

𝜉𝑖𝑗

max
1≤𝑖≤𝑘

(𝜉𝑖𝑗)
𝑤̃𝑖𝑗 . 𝛹

(𝑢) =

(

 
 
 
 
 

𝜉𝑗
𝑙

max
1≤𝑖≤𝑘

𝜉𝑗
𝑙 . 𝑤𝑗

𝑙 . 𝛹(𝑢),

𝜉𝑗
𝑚

max
1≤𝑖≤𝑘

𝜉𝑗
𝑚 . 𝑤𝑗

𝑚. 𝛹(𝑢),

𝜉𝑗
𝑢

max
1≤𝑖≤𝑘

𝜉𝑗
𝑢 . 𝑤𝑗

𝑢. 𝛹(𝑢)

)

 
 
 
 
 

                                                                            (12) 

Step 4.2. The degree of usefulness is defined relation to the ideal value using Eqs. (13) and (14). By 
applying Eq. (13), the values of the matrix are transformed. 

𝜗̃𝑖𝑗 =
min
1≤𝑖≤𝑘

(𝜉𝑖𝑗)

𝜉𝑖𝑗
𝑤̃𝑖𝑗 . 𝛹

(𝑢) =

(

 
 
 
 
 
 

min
1≤𝑖≤𝑘

𝜉𝑗
𝑙

𝜉𝑗
𝑙 . 𝑤𝑗

𝑙 . 𝛹(𝑢),

min
1≤𝑖≤𝑘

𝜉𝑗
𝑚

𝜉𝑗
𝑚 . 𝑤𝑗

𝑚. 𝛹(𝑢),

min
1≤𝑖≤𝑘

𝜉𝑗
𝑢

𝜉𝑗
𝑢 . 𝑤𝑗

𝑢. 𝛹(𝑢)

)

 
 
 
 
 
 

                                                                                (13) 

While the use of Eq. (14) defines the degree of utility in relation to the anti-ideal value: 

𝜗̃𝑖𝑗
− = −𝜗̃𝑖𝑗 + max

1≤𝑖≤𝑘
(𝜗̃𝑖𝑗) + min

1≤𝑖≤𝑘
(𝜗̃𝑖𝑗) =

(

 

−𝜗𝑗
𝑙 + max

1≤𝑖≤𝑘
𝜗𝑗
𝑙 + min

1≤𝑖≤𝑘
𝜗𝑗
𝑙 ,

−𝜗𝑗
𝑚 + max

1≤𝑖≤𝑘
𝜗𝑗
𝑚 + min

1≤𝑖≤𝑘
𝜗𝑗
𝑚,

−𝜗𝑗
𝑢 + max

1≤𝑖≤𝑘
𝜗𝑗
𝑢 + min

1≤𝑖≤𝑘
𝜗𝑗
𝑢
)

                                         (14) 

Step 5. Defining the aggregated degrees of utility of alternatives.  

Step 5.1. The total utility of the alternatives relative to the ideal value is calculated by Eq. (15). 
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ℑ̃𝑗
+ =∑(𝜗̃𝑗

+) = (∑(𝜗𝑗
+)

𝑙
𝑛

𝑗=1

,∑(𝜗𝑗
+)

𝑚
𝑛

𝑗=1

,∑(𝜗𝑗
+)

𝑢
𝑛

𝑗=1

 )                                                                            (15)

𝑛

𝑗=1

 

Step 5.2. The total utility of the alternatives relative to the anti-ideal value is calculated by Eq. (16). 

ℑ̃𝑗
−

=∑(𝜗̃𝑗
−) = (∑(𝜗𝑗

−)
𝑙

𝑛

𝑗=1

,∑(𝜗𝑗
−)

𝑚
𝑛

𝑗=1

,∑(𝜗𝑗
−)

𝑢
𝑛

𝑗=1

 )                                                                              (16)

𝑛

𝑗=1

 

Step 6. Calculate the final utility functions and rank the alternatives.  

The utility functions for the alternatives are computed using Eq. (17). 

Ω̃𝑖 = (ℑ̃𝑗
+ + ℑ̃𝑗

−). √𝛼. 𝑓(ℑ̃𝑗
+)

𝜑
+ (1 − 𝛼). 𝑓(ℑ̃𝑗

−)
𝜑𝜑

=

(

 
 
 
 
((ℑ𝑖

+)𝑙 + (ℑ𝑖
−)𝑙). √𝛼. 𝑓(ℑ𝑖

+𝑙)
𝜑
+ (1 − 𝛼). 𝑓(ℑ𝑖

−𝑙)
𝜑
,

𝜑

((ℑ𝑖
+)𝑙 + (ℑ𝑖

−)𝑙). √𝛼. 𝑓(ℑ𝑖
+𝑙)

𝜑
+ (1 − 𝛼). 𝑓(ℑ𝑖

−𝑙)
𝜑
,

𝜑

((ℑ𝑖
+)𝑙 + (ℑ𝑖

−)𝑙). √𝛼. 𝑓(ℑ𝑖
+𝑙)

𝜑
+ (1 − 𝛼). 𝑓(ℑ𝑖

−𝑙)
𝜑𝜑

)

 
 
 
 

                                                                     (17) 

𝜑 ∈ [1,∞), 𝛼 ∈ [0,1]. 

𝑓(ℑ̃𝑗
+) =

ℑ̃𝑗
+

ℑ̃𝑗
+ + ℑ̃𝑗

−
= (

(ℑ𝑖
+)𝑙

(ℑ𝑖
+)𝑙 + (ℑ𝑖

−)𝑙
,

(ℑ𝑖
+)𝑚

(ℑ𝑖
+)𝑚 + (ℑ𝑖

−)𝑚
,

(ℑ𝑖
+)𝑢

(ℑ𝑖
+)𝑢 + (ℑ𝑖

−)𝑢
) 

𝑓(ℑ̃𝑗
−) =

ℑ̃𝑗
−

ℑ̃𝑗
+ + ℑ̃𝑗

−
= (

(ℑ𝑖
−)𝑙

(ℑ𝑖
+)𝑙 + (ℑ𝑖

−)𝑙
,

(ℑ𝑖
−)𝑚

(ℑ𝑖
+)𝑚 + (ℑ𝑖

−)𝑚
,

(ℑ𝑖
−)𝑢

(ℑ𝑖
+)𝑢 + (ℑ𝑖

−)𝑢
) 

The utility function of alternatives has two parameters  and 𝜑 and 𝛼. For more information [26]. For 
the final ranking of the alternatives, the final utility functions are used, where the alternative is 
desired to have the highest value. 

4. Result 

People from various fields of expertise were brought together to form a decision-making 
group to determine the optimal site selection for solar panel installations. Table 2 shows the 
structure of the decision-making group, which includes representatives from each area of expertise. 

                                                                                  Table 2.  
Profiles of Experts 

Experts Role Responsibilities 

Energy Engineer (E1) 
Technical evaluation of solar 

energy systems 
- Analyzing the efficiency and performance 

of solar panels and associated equipment  
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- Assessing technical feasibility and system 
integration 

Environmental 
Engineer/Scientist (E2) 

Assessment of environmental 
impacts and sustainability 

criteria 

- Examining the environmental impacts of 
solar panel installations  

- Analyzing effects on biodiversity, land 
use, and soil quality 

Geographic Information 
Systems (GIS) Specialist (E3) 

Spatial assessment and 
geographical data analysis 

- Evaluating geographical criteria such as 
solar radiation, terrain suitability, and land 

cover  
- Creating suitability and compliance maps 

Economist (E4) 
Economic analysis and financial 

assessment 

- Calculating installation, operational, and 
maintenance costs  

- Conducting return-on-investment 
analysis and evaluating economic 

sustainability 

The expert team in Table 2 plays a critical role in determining the right strategies for solar panel 
installations. 

4.1. Definition and Explanation of Criteria 

The criteria used for site selection of solar panel installations are explained in detail by the 
expert team and presented in Table 3. These criteria have been carefully determined in order to best 
assess the efficiency, environmental impact and economic sustainability of the installation sites. Each 
criterion has a significant impact on the effectiveness and long-term success of solar energy systems. 

                                               Table 3.  
Criteria for Selecting Locations for Solar Panel Installation 

Criteria Description 

Installation Cost (C1) 
Refers to the initial cost of solar panel installation. Lower costs make projects 

more accessible to a wider audience. 

Energy Efficiency (C2) 
Measures the energy production efficiency of solar panels, determining the 

amount of energy generated post-installation. Efficient systems produce more 
energy with less input. 

Environmental Impact 
(C3) 

Examines the environmental effects of solar energy systems, particularly 
concerning carbon emissions and resource use. 

Installation Time (C4) 
The duration required for installing solar panels is critical for project planning. 

Short installation times enable faster project implementation. 
Energy Production 

Capacity (C5) 
Assesses the potential energy production capacity of the panels. Higher capacity 

results in increased energy production and efficiency. 

Payback Period (C6) 
The time required for the investment to become profitable after installation. Short 

payback periods enhance financial sustainability. 

Maintenance Costs (C7) 
Regular maintenance costs for solar panel systems influence total operational 

expenses. Lower maintenance costs improve economic efficiency. 

Panel Lifespan (C8) 
The service life of panels affects long-term efficiency and investment longevity. 

Durable panels offer long-term profitability. 
Suitability for Climate 

Conditions (C9) 
Adaptability of panels to the climatic conditions of the installation region, 

impacting their efficiency. Performance varies across different climates. 

Renewability Rate (C10) 
Indicates the renewable energy utilization rate of the systems. Higher 

renewability rates promote environmental sustainability. 
Change in Efficiency Over 

Time (C11) 
Variations in panel efficiency over time serve as a long-term performance 

indicator. High efficiency ensures higher energy output. 
Installation Area and Site 

Selection (C12) 
The suitability of the installation area directly influences efficiency and energy 

production capacity. Proper site selection leads to more efficient systems. 
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Impact on Public Health 
(C13) 

Evaluates the effects of solar energy projects on the health of the surrounding 
community. Panels may offer environmental and health benefits. 

Energy Storage Capacity 
(C14) 

The capacity to store generated energy. High storage capacity facilitates the 
management of energy production fluctuations. 

Innovative Technologies 
and Methods (C15) 

Advanced technologies and methods used in solar panel production can enhance 
system efficiency, enabling greater energy production. 

Panel Production Process 
(C16) 

The production process of panels impacts environmental and cost factors. 
Sustainable production methods reduce environmental impact. 

Return on Investment 
(C17) 

Determines how quickly the investment is recovered. Short recovery times are 
attractive to investors. 

Social Acceptance and 
Public Support (C18) 

Social acceptance of solar energy projects affects their success. Community 
support facilitates project implementation. 

The criteria in Table 3 cover a wide range of factors that are important for solar panel installations. 
The criteria were evaluated in terms of economic, environmental, social and technical aspects. Each 
criterion represents important parameters that will affect the success and sustainability of solar panel 
systems. For example, while installation cost and maintenance costs are critical for economic 
sustainability, factors such as environmental impact and climate suitability have an impact on 
environmental impacts and efficiency. Criteria such as change in efficiency level and energy 
production capacity determine the long-term performance of the system, while factors such as its 
impact on public health and social acceptance affect the social success of the project. 

4.2. Recommended Locations for The Installation of Solar Panels 

Information for solar radiation in Sivas province is given in Figure 3. 

 

Fig. 3. Sivas Global Radiation Values (kWh/m²/day) [26] 

The data in Figure 3 refer to the change in solar energy potential over the course of the year. In 
January and December, radiation values are at their lowest (January 1,79; Range 1,6). This reflects 
the low level of solar radiation during the winter months. June and July have the highest radiation 
values (6,62 kWh/m²/day). This indicates that the summer months are the most productive period 
for energy production. In the spring and autumn months (March-September), a gradual increase and 
decrease in radiation values is observed. 
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Information about the sunshine duration of Sivas is given in Figure 4. 

 

Fig. 4. Sivas Sunbathing Times (Hours) [26] 

The data in Figure 4 is important for understanding the potential for solar power generation 

throughout the year. In January and December, the duration of sunshine is very low (January 3,76 

hours; Range 3,3 hours). This refers to limited energy production during the winter months. June, 

July and August have the longest periods of sunshine (June and July 10,5 hours; August 10,65 hours). 

These months are the peak points in terms of energy production. In spring and autumn (March-

September), the duration of sunshine gradually increases and decreases.  

The solar energy potential of the districts of Sivas province is given in Figure 5. 
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Fig. 5. Solar Energy Potential of Sivas Districts [26]. 

The map of Sivas province in Figure 5 shows that the southern and central districts have a high solar 

radiation potential. These regions are more efficient areas for energy production and are ideal 

locations for solar panel installations. In the winter months, considering the low solar radiation and 

short sunshine periods, sustainable energy production can be achieved throughout the year with 

energy storage systems. In the light of these data, experts have selected the most suitable places for 

solar panel installation in Sivas province and presented the characteristics of these places in Table 4. 

Table 4. 
             Recommended Locations for Solar Panel Installation 

Location Features 
Imranlı (A1) High solar radiation, proximity to infrastructure, and low environmental impacts. 

Altınyayla (A2) 
Adequate solar radiation, high level of social acceptance, and low economic 

installation costs. 

Divriği (A3) 
Suitable altitude for solar panel efficiency, accessible infrastructure, and minimal 

ecological impacts. 
Kangal (A4) Moderate solar radiation, suitable land use, and favorable climatic conditions. 
Gürün (A5) High solar radiation levels, appropriate altitude, and low environmental impacts. 

These recommendations in Table 4 have been prepared by experts evaluating the solar 

energy potential of Sivas, based on criteria such as solar radiation levels, access to infrastructure, 

and environmental sustainability. 

4.3. Data Collection and Analysis 

According to Table 1, the experts evaluated both the criteria and the available and proposed 

locations for solar panel installation. The evaluation of the criteria according to the expert opinions 

is given in Table 5, and the evaluation of the alternatives is given in Table 6. 

                                                                       Table 5.  

Experts’ Evaluation of Criteria 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 

E1 VH AH MH H AH VH H AH VH H MH E MH VH H MH AH MH 

E2 MH H AH E H MH E MH AH VH H VH AH H VH VH MH VH 

E3 E MH VH MH H E E MH VH H VH AH H MH H H E VH 

E4 AH VH H VH AH VH AH VH H MH H MH MH VH VH H AH H 

Table 5 provides a summary of the scores given by experts to certain criteria. The criteria were 
evaluated and scored by each expert within the framework of their field of expertise. This scoring will 
help determine the weight of the criteria to be used in the final decision-making process. 

                                                                   Table 6.  
Experts’ Evaluation of Alternatives 

Recommended Places Experts C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 

A1 

E1 MH H VH E VH H MH AH VH H MH H VH H AH VH H AH 

E2 VH AH AH MH H VH AH H VH MH AH MH H VH H MH H AH 

E3 H MH H MH VH H MH VH AH MH H VH H MH H AH H MH 
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E4 AH H MH VH AH H MH AH VH H VH MH H VH AH H E MH 

A2 

E1 VH MH H H H MH VH H MH AH H MH H E MH H VH E 

E2 H MH H VH MH VH H VH MH AH H AH AH MH VH H MH E 

E3 VH H AH H MH E H AH E AH VH MH VH AH MH MH E H 

E4 VH MH H MH H MH AH H MH VH MH AH VH MH H VH VH H 

A3 

E1 H VH MH MH MH VH H VH H MH VH AH MH AH H AH MH VH 

E2 MH H E E VH H MH AH H VH E H MH AH AH VH VH H 

E3 MH AH VH E H AH VH H VH H MH H AH E VH H AH VH 

E4 MH VH VH E MH AH H E H AH H VH MH H VH MH H VH 

A4 

E1 E E H VH E AH E MH AH VH E VH E MH E MH AH H 

E2 E VH MH AH E MH E MH E H VH VH E H E AH AH VH 

E3 E VH MH AH AH MH E MH H E E AH E H AH E MH AH 

E4 H AH AH H VH E VH VH AH E E H AH AH MH E AH E 

A5 

E1 AH MH AH H AH E AH H E E AH E AH VH VH H E MH 

E2 AH MH VH H VH E VH H AH E MH E VH E MH H E MH 

E3 AH MH E VH E VH AH H MH VH AH E MH VH E VH VH E 

E4 E E E AH E VH E MH E MH AH E E E E AH MH AH 

The assessment in Table 6 guides decision-makers to objectively understand the current state of 
alternatives in the context of sustainable energy solutions and to make choices in line with strategic 
priorities. 

4.4 Determining the Weights with F-LMAW Method 

The matrix obtained as a result of the experts' evaluations and presented in Table 5 were used 
as priority vectors for the criteria. Subsequently, the value of the absolute fuzzy anti-ideal spot was 
defined by experts as 𝛾̃𝐴𝐼𝑃 = (0.5, 0.5, 0.5). For example, the relationship between the elements of 
the priority vector defined by E1 and the absolute anti-ideal point is calculated as follows. 

𝜂̃𝐶1
𝐸1 = (

4

0,5
,
4,5

0,5
,
5

0,5
) = (8,9,10),… , 𝜂̃𝐶18

𝐸1 = (
3

0,5
,
3,5

0,5
,
4

0,5
) = (6,7,8). 

For other specialists, calculations were made in a similar way. The determination of the vector of 
weight coefficients was made by applying Eq. (3). The calculation of the combined fuzzy vectors of 
the weight coefficients is done with the help of Eq. (4)- (6). Eq. (2) was applied for the final values of 
the weight coefficient obtained from the F-LMAW and the weights obtained are given in Figure 6. 



Journal of Intelligent Decision Making and Information Science 

Volume 1, (2024) 65-94 

82 
 
 

 

 

Fig. 6. Criteria Weights 

The highest criterion with a weight value of 0,0613 in Figure 6 was “suitability for climatic conditions” 
(C9). This shows that climatic conditions are considered as the most important criterion in solar panel 
installation decisions. This is a critical criterion that particularly affects energy production capacity 
and sustainability. Power generation capacity (C5) ranked second with a weight value of 0,0608. This 
result indicates that capacity is of high importance in terms of technical performance and energy 
efficiency. Environmental impact (C3) is a very important criterion for environmental sustainability 
with a score of 0,0578. This reflects an approach in which environmentally conscious projects are 
preferred. Maintenance costs (C7) are one of the lowest importance criteria with a weight value of 
0,0502. This suggests that decision-makers are focusing on other factors rather than long-term costs.  

4.5. Fuzzy Bonferroni Aggregation Operator Application 

The experts interpreted the performance of the alternatives according to Table 1. In order to 

bring these individual evaluations together, a combined fuzzy decision matrix was obtained using Eq. 

(3) and given in Appendix A. 

4.6. F-ARTASI Method Application Results 

The combined fuzzy decision matrix given in Appendix A is used as the initial decision matrix 

mentioned in the first step of the method. In the second step of the method, the absolute maximum 

and absolute minimum values of the 𝑗𝑡ℎ criterion are calculated by Eqs. (8) and (9) respectively and 

given in Table 7. 

                                           Table 7.  
Fuzzy absolute minimum and fuzzy absolute maximum values 

 C1 C2 C3 C4 C5 

℘̃𝒋
𝒎𝒂𝒙 5,2861 5,8214 6,2461 5,3140 5,8460 6,2461 5,0437 5,5778 5,9816 5,4453 5,9768 6,2461 5,3140 5,8460 6,2461 

℘̃𝒋
𝒎𝒊𝒏 1,5154 1,9753 2,4397 1,6373 2,0974 2,5620 2,0630 2,5318 2,8937 1,4094 1,8668 2,3292 1,9812 2,4448 2,8937 

 C6 C7 C8 C9 C10 

℘̃𝒋
𝒎𝒂𝒙 5,4453 5,9768 6,2461 5,1783 5,7114 6,1133 5,4453 5,9768 6,2461 5,4506 5,9816 6,3797 5,7165 6,2461 5,4453 
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℘̃𝒋
𝒎𝒊𝒏 1,9575 2,4241 2,7861 1,6174 2,0803 2,5469 1,9753 2,4397 2,9075 1,6373 2,0974 2,5620 1,7351 2,1987 1,9575 

 C11 C12 C13 C14 C15 

℘̃𝒋
𝒎𝒂𝒙 6,3797 5,4345 5,9673 6,1087 5,3140 5,8460 6,2461 5,3140 5,8460 6,2461 5,0198 5,5569 5,9768 5,3140 5,8460 

℘̃𝒋
𝒎𝒊𝒏 2,6659 1,6174 2,0803 2,5469 1,2989 1,7543 2,2153 1,7158 2,1820 2,5469 1,9575 2,4241 2,7861 1,7351 2,1987 

 C16 C17 C18   

℘̃𝒋
𝒎𝒂𝒙 5,1783 5,7114 6,1133 5,4345 5,9673 6,1087 5,1840 5,7165        

℘̃𝒋
𝒎𝒊𝒏 1,8359 2,3024 2,6659 1,9753 2,4397 2,9075 1,7415 2,2042        

The fuzzy absolute maximum and fuzzy absolute minimum values of the C1 criteria in Table 7 

are obtained as follows. 

℘̃𝑪𝟏
𝒎𝒂𝒙 =

(

 
 
 
 
max
1≤𝑖≤5

{3,7361  . . .   3,9686} + √max
1≤𝑖≤5

{3,7361  . . .   3,9686}5 ,

max
1≤𝑖≤5

{4,2377  . . .  4,4721} + √max
1≤𝑖≤5

{4,2377  . . .  4,4721}5 ,

max
1≤𝑖≤5

{4,6188  . . .  4,6098} + √max
1≤𝑖≤5

{4,6188  . . .  4,6098}5 ,
)

 
 
 
 

= (5,2861  5,8214  6,2461) 

℘̃𝑪𝟏
𝒎𝒊𝒏 =

(

 
 
 
 
min
1≤𝑖≤5

{3,7361  . . .   3,9686} − √min
1≤𝑖≤5

{3,7361  . . .   3,9686}5 ,

min
1≤𝑖≤5

{4,2377  . . .  4,4721} − √min
1≤𝑖≤5

{4,2377  . . .  4,4721}5 ,

min
1≤𝑖≤5

{4,6188  . . .  4,6098} − √min
1≤𝑖≤5

{4,6188  . . .  4,6098}5 ,
)

 
 
 
 

= (1,5154  1,9753  2,4397) 

The third step of the procedure was to standardize the elements of the Appendix B matrix using Eqs. 

(10-11). The criteria values from Appendix E were translated into the criterion interval [1, 10], with 

the limit values 𝛹(𝑙)=1 and 𝛹(𝑢)=10. Limit values for criteria intervals 𝛹(𝑙)=1 and 𝛹(𝑢)=10) were 

determined based on expert judgments and the assumption that the interval [1,10] offers a suitable 

range for the distribution of utility functions of four options. Eq. (10) was used to conduct the 

transformation into the criteria interval [1, 10]. The next section describes the standardization 

technique for the element in table Appendix B positions A1-C1. 

𝜙̃𝐴1,𝐶1 =

(

 
 
 
 

(10 − 1)

(5,2861 − 1,5154)
∗ 3,7361 +

(5,2861 ∗ 1 − 1,5154 ∗ 10)

(5,2861 − 1,5154)
,

(10 − 1)

(5,8214 − 1,9753)
∗ 4,2377 +

(5,8214 ∗ 1 − 1,9753 ∗ 10)

(5,8214 − 1,9753)
(10 − 1)

(6,2461 − 2,4397)
∗ 4,6188 +

(6,2461 ∗ 1 − 2,4397 ∗ 10)

(6,2461 − 2,4397)

,

)

 
 
 
 

= (6,3005  6,2941  6,1524) 

All calculations were performed similarly and the standardized matrix is given in Appendix B. 

Using Eq. (11), the values of Eq. (10) are standardized using the reverse sorting algorithm: 

𝜉𝐴1,𝐶1 = (

−6,3005 + max
1≤𝑖≤5

{6,3005 . . . 6, 8555} + min
1≤𝑖≤5

{6,3005 . . . 6, 8555},

−6,2941 + max
1≤𝑖≤5

{6,2041 . . . 6,8427} + min
1≤𝑖≤5

{6,2041 . . . 6,8427},

−6,1524 + max
1≤𝑖≤5

{6,1524 . . .  6,1311} + min
1≤𝑖≤5

{6,1524 . . .  6,1311}

) = (4,4747  4,5088  4,6805) 
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In the fourth step of the method, Eqs. (12, 13) are used to determine the usefulness level of the 

alternatives using the ideal and anti-ideal values, Appendices C and D, respectively. The next 

section demonstrates how to define the degree of usefulness from Appendices C and D at 

positions A1-C1 (type min). Eq. (12) defines the degree of usefulness of alternative A1 for criteria 

C1 in relation to the ideal value as follows: 

𝜗̃𝐴1,𝐶1
+ =

(

 
 
 
 

4,4747

𝑚𝑎𝑥{4,4747  . . .  3,9196}
∗ 0,0023 ∗ 10,

4,5088

𝑚𝑎𝑥{4,5088  . . .  3,9603}
∗ 0,0030 ∗ 10,

4,6805

𝑚𝑎𝑥{4,6805  . . .  4,7018}
∗ 0,0037 ∗ 10

)

 
 
 
 

= (0,0153  0,0196  0,0259) 

Defining the usefulness of alternative A1 for criteria C11 in respect to the anti-ideal value Eqs. (13, 

14). Using Eq. (13), we find that: 

𝜗𝐴1,𝐶1 =

(

 
 
 
 

𝑚𝑖𝑛{4,4747  . . .  3,9196}

4,4747
∗ 0,0023 ∗ 10,

𝑚𝑖𝑛{4,5088  . . .  3,9603}

4,5088
∗ 0,0030 ∗ 10,

𝑚𝑖𝑛{4,6805  . . .  4,7018}

4,6805
∗ 0,0037 ∗ 10

)

 
 
 
 

= (0,0205  0,0261  0,0326) 

Using Eq. (14), we determine the degree of usefulness of alternative A1 for criteria C1 in proportion 

to the anti-ideal value: 

𝜗̃𝐴1,𝐶1
− = (

−0,0205 + 𝑚𝑎𝑥{0,0205  . . .  0,0234} + 𝑚𝑖𝑛{0,0205  . . .  0,0234},
−0,0261 +𝑚𝑎𝑥{0,0261  . . .   0,0298} + 𝑚𝑖𝑛{0,0261  . . .   0,0298}

−0,0326 + 𝑚𝑎𝑥{0,0326  . . .  0,0324} + 𝑚𝑖𝑛{0,0326  . . .  0,0324}
, ) = (0,0163  0,0208  0,0274) 

The remaining values from Appendices C and D are calculated in a similar way. 

In the fifth step of the method, Eqs. (15) and (16) are used to define the total utility of the 

alternatives and are given in Table 8. 

                                                             Table 8.  
Aggregated utility degrees of alternatives 

 𝕴̃𝒋
+ 𝕴̃𝒋

− 

A1 0,3187 0,4191 0,5388 0,3304 0,4336 0,5545 

A2 0,3452 0,4543 0,5756 0,3539 0,4648 0,5854 

A3 0,3306 0,4326 0,5535 0,3417 0,4460 0,5668 

A4 0,3676 0,4789 0,6199 0,3726 0,4851 0,6263 

A5 0,3679 0,4821 0,6203 0,3730 0,4883 0,6280 

The aggregate usefulness levels of the alternatives in Table 8 are obtained by summing the criteria 
values of Appendices C and D within each alternative.    

In the sixth step of the method, the final utility functions of the alternatives were calculated using 

Eq. (17) and presented in Table 9.  For the calculation of the terminal utility functions, 𝜑=1 and 𝛼=0.5 

values are accepted. 
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      Table 9.  
Fuzzy values of the utility functions of the alternatives 

 𝒇(𝕴̃𝒋
+) 𝒇(𝕴̃𝒋

−) 𝛀̃𝒊 

A1 0,4910 0,4915 0,4928 0,5072 0,5085 0,5090 0,3240 0,4263 0,5477 

A2 0,4938 0,4943 0,4958 0,5042 0,5057 0,5062 0,3488 0,4596 0,5816 

A3 0,4918 0,4924 0,4941 0,5059 0,5076 0,5082 0,3353 0,4393 0,5615 

A4 0,4966 0,4968 0,4975 0,5025 0,5032 0,5034 0,3698 0,4820 0,6236 

A5 0,4966 0,4968 0,4969 0,5031 0,5032 0,5034 0,3704 0,4852 0,6243 

The calculation of the final utility function of alternative A1 was performed as follows. 

𝑓(ℑ̃𝐴1
+ ) = (

0,3187

0,3187 + 0,3304
,

0,4191

0,4191 + 0,4336
,

0,5388

0,5388 + 0,5545
) = (0,4910  0,4915  0,4928) 

𝑓(ℑ̃𝐴1
− ) = (

0,5545

0,5545 + 0,5388
,

0,4336

0,4336 + 0,4191
,

0,3304

0,3304 + 0,3187
) = (0,5072  0,5085  0,5090) 

Ω̃𝐴1 = (

(0,3187 + 0,3304){0,5 ∗ 0,49101 + (1 − 0,5) ∗ 0,50721}1/1

(0,4191 + 0,4336){0,5 ∗ 0,49151 + (1 − 0,5) ∗ 0,50851}1/1

(0,5388 + 0,5545){0,5 ∗ 0,49281 + (1 − 0,5) ∗ 0,50901}1/1
) = (0,3240  0,4263  0,5477) 

Using Eq. (2), fuzzy values are converted into crips values and given in Table 10. 

    Table 10.  
Ranking alternatives and utility functions 

 

 

According to the ranking in Table 10, Gürün – 0,4892 has the highest utility function value. This 
indicates that the region has optimal conditions for solar panel installation. Kangal – 0,4869 ranked 
second in the ranking, showing strong performance, especially in environmental and economic 
criteria. Altınyayla – 0,4615 took third place and showed high performance, especially in technical 
criteria. Divrigi – 0,4423 was in fourth place and performed moderately. Imranlı – 0,4295 ranked fifth 
with the lowest utility function value. 

5. Sensitivity Analysis and Validation of The Results 

Sensitivity analysis and validation of the results obtained using the F-ARTASI method were 
performed. The sensitivity analysis takes into account the variation of the Bonferroni aggregation 
operator parameters (and). The comparison of the F-LMAW and F-ARTASI model with other models 
in the literature is presented as part of the validation results. For the comparison of the results of the 
considered MCDM models, a statistical correlation with the initial results was performed. 

5.1. Sensitivity Analysis- Variation of 𝑝 and 𝑞 Parameters 

Alternatives 𝛀𝒊 Rank 

Imranlı  0,4295 5 

Altınyayla 0,4615 3 

Divrigi 0,4423 4 

Kangal 0,4869 2 

Gürün 0,4892 1 
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The overall effect of the parameters p and q presented in the Bonferroni mean aggregation 
operator on the ranking of the presented alternatives in the proposed optimal intervention strategies 
selection management approach is analysed using a sensitivity analysis. Firstly, it can be observed 
that when the values of p and q are varied from 1 to 5, the ranking of all alternatives remains the 
same. Then, if we fix any of the parameters between 0 and 1, the difference in the ranking of the 
alternatives was also analysed. Again, the ranking of all alternatives remained the same. The results 
of the sensitivity analysis by changing the parameters are shown in Figure 7. 

 

Fig. 7. Sensitivity analysis by varying the parameters 𝑝 and 𝑞 

The fact that the alternatives are in the same order in all the combinations in Figure 7 reveals a 

remarkable situation in terms of the consistency and reliability of the approach adopted for solar 

panel installation. In the context of determining important criteria for solar panel installation and 

selecting the optimum location, this situation is summarized in Table 11. 

               Table 11.  
Parameter-Based Sensitivity Analysis Results 

Evaluation Description 

Effect of Criteria 
The consistent ranking of alternatives across all combinations clearly demonstrates 

the importance and influence of the criteria in the evaluation process. This highlights 
the decisive role of criteria in solar panel installation decisions. 

Certainty in Decision-
Making Process 

The identical ranking of alternatives in all scenarios indicates that decision-makers 
(DMs) have clear perceptions and opinions about these alternatives. This clarity 

enables more precise and firm steps in solar panel installation decisions. 

Strength of Systematic 
Approach 

The consistent ranking in all combinations proves that the methods used are based on 
a systematic and analytical approach. This ensures that solar panel installation 

decision-making processes are grounded on solid foundations. 

Strategic Planning and 
Implementation 

The consistent ranking across combinations enhances the coherence of planning and 
implementation processes for solar panel installation strategies. This allows decision-

makers to execute the identified strategies more effectively. 
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Likelihood of 
Achieving Goals 

The identical ranking of alternatives in every combination reduces uncertainty in 
achieving solar panel installation objectives. This provides a strong basis for 

optimizing energy management processes and minimizing risks associated with 
installation. 

Table 11 highlights the importance of consistency in the ordering of alternatives in solar panel 
installation. 

5.2. Validation of Results- Comparison with Other MCDM Techniques 

The results of the F-ARTASI method are compared with traditional multi-criteria models in the 

literature. For the comparison; CoCoSo method Yazdani et al., [27], TOPSIS method Tzeng and Huang, 

[28], WASPAS method Zavadskas et al., [29], MARCOS method Stević et al., [30] and RAWEC method 

Puška et al., [17] fuzzy versions were preferred. Figure 8 shows the results of the comparison of the 

mentioned FMCDM methods. 

 

Fig. 8. Ranking Stability of Alternatives Using Various FMCDM methods 

The sequences in Figure 8 provide an important finding to examine the consistency and reliability of 
different FMCDM methods in the decision process. The use of such methods in an area that requires 
multi-criteria decision-making, such as solar panel installation, reveals an analytical and systematic 
approach to the evaluation of alternatives. 

✓ Overall Performance of Alternatives; A1 has consistently ranked 5th in all methods. This 
makes it clear that this alternative is an underperforming option. A5 has consistently ranked 
1st in all methods. This shows that this alternative performs best in most of the criteria and is 
the strongest option. 

✓ Consistency of Different Methods; It is seen that the results of F-RAWEC, F-MARCOS, F-
WASPAS, F-TOPSIS and F-CoCoSo methods are largely parallel to each other. This shows that 
the methods produce consistent results in terms of the criteria used and provide a reliable 
evaluation. In particular, the fact that the A5 alternative is in the first place clearly states that 
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the decision processes in all methods meet at a common point and that this alternative should 
be prioritized. 

✓ Impact and Consistency of Criteria; Figure 7 shows that the weights of the criteria and the 
computational mechanisms of the methods have a strong influence on the ranking. For 
example, A2 was found to be 2nd in some methods (F-MARCOS and F-WASPAS) and 3rd in 
others. A4 was generally ranked 2nd or 3rd. 

✓ Implications for Decision Makers; A5 should be considered as a priority option because it 
ranks first in all methods. A2 and A4 are notable alternatives, ranking second and third in the 
ranking. A1 can be discarded due to its poor performance in all methods. 

The fact that different methods produce the same or similar rankings shows that a correct approach 
is followed in the selection and weighting of criteria. This consistency offers reliable guidance in 
strategic decision-making processes such as solar panel installation. Prioritizing A5 can help drive 
more effective outcomes for sustainable energy solutions. 

Since the overall ranking of the alternatives is the same in all methods, experts will reach 
similar results no matter which method they use. This shows that a flexible and reliable decision-
making approach is adopted in the process of optimising occupational safety risks. The statistical 
correlation between the rankings obtained by the F-ARTASI procedure and the other procedures was 
determined by Spearman Correlation Coefficient (SCC). The findings regarding the comparison of the 
rankings by applying SCC are given in Table 12. 

                    Table 12.  
Rank correlations of the tested models 

 F-CoCoSo F-MARCOS F-WASPAS F-TOPSIS F-RAWEC 

F-ARTASI 0,90 1 0,90 1 0,70 

From the results presented in Table 12, it can be concluded that there is a high correlation (average 
0.90) between the ARTASI approach and the other five FMCDM procedures. As a result, it is possible 
to conclude that the ranking obtained from the proposed procedure is valid and reliable. 

6. Discussion, Practical and Managerial Implications 

The integration of F-ARTASI and F-LMAW methods for evaluating solar panel installation sites 

presents a robust framework for addressing the multi-dimensional and complex nature of decision-

making in sustainable energy planning. This section discusses the theoretical, practical, and 

managerial implications of the study results, emphasizing their contribution to energy sustainability 

and strategic decision-making processes. 

6.1. Theoretical Implications 

The consistent rankings observed across all sensitivity analyses (varying parameters 𝑝 and 𝑞 in 
the Bonferroni mean operator) and validations against other FMCDM methods (e.g., F-CoCoSo, F-
TOPSIS, F-MARCOS, F-WASPAS, and F-RAWEC) confirm the reliability of the F-ARTASI approach. This 
high correlation, as evidenced by Spearman Correlation Coefficients (average 0.90), reinforces the 
robustness of the proposed methodology. 
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✓ Impact of criteria The study highlights that criteria such as Installation Cost , energy efficiency  
and environmental impact play decisive roles in determining optimal solar panel locations, as 
their consistent weightings ensure reliable decision-making. 

✓ Consistency and Systematic Approach The alignment of rankings with other FMCDM 
techniques substantiates the systematic and analytical nature of the proposed method, 
ensuring its adaptability across diverse energy planning scenarios. 

6.2. Practical Implications 

This study provides actionable insights for stakeholders in sustainable energy projects. 

✓ Priorities in Energy Management: Gürün's consistent first rank across all methods and 
parameters underscores its superiority as the optimal location for solar panel installations. 
Decision-makers can focus on its development to achieve maximum energy production and 
sustainability outcomes. 

✓ Performance Evaluation of Alternatives: The stable performance of other alternatives, such 
as Kangal (Rank 2) and Altınyayla (Rank 3), provides a hierarchy for resource allocation and 
infrastructure planning. 

✓ Validity and Reliability: The validation process demonstrates that the use of F-ARTASI aligns 
with established methods, offering stakeholders confidence in adopting this approach for 
future projects. 

6.3. Managerial Implications 

The results have significant implications for decision-making, resource allocation, and strategic 
energy planning. 

✓ Strategic Planning and Implementation: Consistent rankings across sensitivity analyses enable 
managers to develop and implement solar panel installation strategies with reduced 
uncertainty. 

✓ Integration of criteria into Management Processes: The inclusion of criteria such as life of 
panels (C8), innovative technologies and methods (C15), and return on investment (C17) 
provides a holistic framework for assessing both technical and economic dimensions. 

✓ Sustainability Strategies By prioritizing sites with high energy generation capacity (C5) and 
minimal environmental impact (C3), managers can align energy goals with environmental and 
social responsibilities. 

The findings of this study underscore the strategic value of adopting advanced FMCDM methods like 
F-ARTASI for energy planning. By ensuring consistent, reliable, and practical decision-making, the 
proposed approach supports the development of sustainable energy infrastructure. Future research 
could focus on integrating more dynamic criteria or exploring the adaptability of this framework to 
other renewable energy domains. 

7. Conclusions, Limitations, and Directions for The Future 

This section includes summarizing the findings of the study, discussing the limitations of 
methods and applications, and presenting suggestions for future studies. The effectiveness of 
FMCDM methods used in the evaluation of solar panel installation sites and their contribution to 
decision processes are discussed both theoretically and practically. 
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7.1. Conclusions  

This study demonstrated the effectiveness of MCDM approaches in the selection of solar panel 
installation sites in sustainable energy solutions. Determining the criterion weights with the F-LMAW 
method and ranking the alternatives with the F-ARTASI method provided both a systematic and 
consistent decision process. 

✓ Determinism of Criteria: The significant impact of criteria such as installation cost (C1), energy 
efficiency (C2) and environmental impact (C3) in the evaluation process is emphasized. These 
criteria have played a critical role in ensuring the stability of the ranking results. 

✓ Performance of Alternatives: Gürün has been determined as the most suitable installation 
location by ranking first in all methods. Kangal and Altınyayla were in second and third place 
respectively, while Imranli underperformed in fifth place. 

✓ Reliability of Methods: The F-ARTASI method showed high correlation (mean Spearman 
Correlation Coefficient 0.90) in comparisons with other FMCDM methods (F-CoCoSo, F-
TOPSIS, F-MARCOS, F-WASPAS and F-RAWEC). This result reveals the validity and reliability of 
the method used. 

7.2. Limitations  

While the findings of this study provide important insights, they have some limitations: 

✓ Scope of Criteria and Alternatives: Although the criteria used in the study are comprehensive 
in the context of energy management, dynamics such as regional socio-economic factors or 
climate variability are not taken into account.  

✓ Parameter Constancy The 𝑝 and 𝑞 parameters of the Bonferroni mean were analyzed, but the 
effect of different weighting approaches was not evaluated. 

✓ Regional Scope: The study focused only on the province of Sivas. A broader geographic 
analysis may be useful for assessing the applicability of the method in other regions.  

✓ Evaluation Based on Expert Opinions: The criteria and weights used were based on the 
opinions of specific experts. A wider stakeholder engagement could have offered a wider 
range of perspectives. 

7.3. Future Directions 

In line with the findings and limitations of this study, recommendations for future research and 
applications are listed below:  

✓ Integration of Dynamic Criteria: The study can be enriched by integrating dynamic factors 
such as seasonal energy demand or regional climate variability into decision processes. 

✓ Expansion of the Geographical Working Area: The applicability of the F-ARTASI method in 
energy infrastructure planning in different regions can be evaluated. This allows testing the 
generalizability of the method. 

✓ Expanding the Criteria with a Multidisciplinary Approach: Addressing socio-economic, 
environmental and technical criteria in a broader framework can support sustainability goals 
more comprehensively. 

✓ Combination of Different MCDM Methods: The integration of F-ARTASI, as well as other 
hybrid methods, can make decision processes more flexible and powerful.  
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✓ Integration of AI-Based Methods: The integration of AI-based algorithms into decision-making 
processes can provide more precise and predictive results with big data analysis. 

This study provides a robust method for optimizing decision-making processes for sustainable energy 
solutions. This method of selecting solar panel installation sites contributes to energy management 
and environmental sustainability goals, while being a valuable reference source for future 
applications and research. 

Appendix A.  
Combined fuzzy decision matrix 

 C1 C2 … C18 

A1 3,7361 4,2377 4,6188 3,6113 4,1130 4,4954 … … … 3,7249 4,2279 4,4907 

A2 3,8730 4,3732 4,8734 3,1225 3,6228 4,1231 … … … 2,9861 3,4881 3,9896 

A3 3,1225 3,6228 4,1231 3,9948 4,4954 4,8734 … … … 3,8730 4,3732 4,8734 

A4 2,7386 3,2404 3,7417 3,7249 4,2279 4,6098 … … … 3,5998 4,1028 4,4861 

A5 3,9686 4,4721 4,6098 2,8723 3,3727 3,8730 … … … 3,2210 3,7249 4,1130 

 
                                                      Appendix B.  
 Standardized aggregated decision matrix 

 C1 C2 … C18 

A1 6,3005 6,2941 6,1524 5,8321 5,8391 5,7232 … … … 6,1854 6,1856 5,5814 

A2 6,6272 6,6112 6,7544 4,6355 4,6623 4,8138 … … … 4,2538 4,2898 4,3198 

A3 4,8359 4,8553 4,9804 6,7708 6,7572 6,6467 … … … 6,5725 6,5580 6,5446 

A4 3,9196 3,9603 4,0785 6,1102 6,1150 6,0026 … … … 5,8582 5,8651 5,5697 

A5 6,8555 6,8427 6,1311 4,0230 4,0617 4,2027 … … … 4,8680 4,8967 4,6305 

max 6,8555 6,8427 6,7544 6,7708 6,7572 6,6467 … … … 6,5725 6,5580 6,5446 

min 3,9196 3,9603 4,0785 4,0230 4,0617 4,2027 … … … 4,2538 4,2898 4,3198 

                                                          
                                                         Appendix C.  
                                                         Degrees of usefulness of alternatives in relation to the ideal value  

 C1 C2 … C18 

A1 0,0153 0,0196 0,0259 0,0188 0,0236 0,0306 … … … 0,0176 0,0222 0,0321 

A2 0,0142 0,0182 0,0226 0,0233 0,0291 0,0360 … … … 0,0249 0,0313 0,0397 

A3 0,0203 0,0259 0,0324 0,0152 0,0192 0,0251 … … … 0,0161 0,0205 0,0262 

A4 0,0234 0,0298 0,0374 0,0177 0,0223 0,0289 … … … 0,0188 0,0238 0,0322 

A5 0,0134 0,0172 0,0260 0,0256 0,0320 0,0397 … … … 0,0226 0,0284 0,0379 

                                                             
                                                               Appendix D.  
                                                               Degrees of usefulness of alternatives in relation to the anti-ideal value  

 C1 C2 … C18 

A1 0,0163 0,0208 0,0274 0,0201 0,0251 0,0322 … … … 0,0182 0,0230 0,0335 

A2 0,0147 0,0189 0,0226 0,0241 0,0301 0,0371 … … … 0,0249 0,0313 0,0397 

A3 0,0213 0,0272 0,0339 0,0152 0,0192 0,0251 … … … 0,0161 0,0205 0,0262 

A4 0,0234 0,0298 0,0374 0,0188 0,0236 0,0303 … … … 0,0197 0,0248 0,0335 

A5 0,0134 0,0172 0,0275 0,0256 0,0320 0,0397 … … … 0,0233 0,0292 0,0384 



Journal of Intelligent Decision Making and Information Science 

Volume 1, (2024) 65-94 

92 
 
 

 

Funding 
This research received no external funding. 
 
Acknowledgement 
This research was not funded by any grant. 
 
References 
[1] Sassi, R., Souheil El, A. (2024). A GIS based MCDM modelling approach for evaluating large-scale solar PV 

installation in Tunisia. Energy Reports, 11, 580-596. https://doi.org/10.1016/j.egyr.2023.12.018. 

[2] Haspolat, E., Cicek, D. D., Gokmener, S., Melek, A. B., Deveci, M., & Oguz, E. (2024). Site selection of floating 
photovoltaic systems on hydropower reservoirs using fuzzy sine trigonometric decision-making model: Turkey 
as a case study. Renewable and Sustainable Energy Reviews, 206, 114830. 
https://doi.org/10.1016/j.rser.2024.114830 

[3] Melek, A. B., Gökmener, S., Haspolat, E., Çiçek, D. D., Deveci, M., Oğuz, E., & Khorasanchi, M. (2024). Fuzzy 
Einstein-based decision-making model for the evaluation of site selection criteria of floating photovoltaic 
system. Ocean Engineering, 301, 117521. https://doi.org/10.1016/j.oceaneng.2024.117521 

[4] Bouraima, M. B., Ayyıldız, E., Badi, I., Özçelik, G., Yeni, F. B., & Pamučar, D. (2024). An integrated intelligent 
decision support framework for the development of photovoltaic solar power. Engineering Applications of 
Artificial Intelligence, 127, 107253. https://doi.org/10.1016/j.engappai.2023.107253 

[5] Majumder, P., Bhowmik, P., Das, A., Senapati, T., Simic, V., & Pamučar, D. (2023). An intuitionistic fuzzy based 
hybrid decision-making approach to determine the priority value of indicators and its application to solar 
energy feasibility analysis. Optik, 295, 171492. https://doi.org/10.1016/j.ijleo.2023.171492 

[6] Shehab, Z. N., Faisal, R. M., & Ahmed, S. W. (2024). Multi-Criteria Decision Making (MCDM) Approach for 
Identifying Optimal Solar Farm Locations: A Multi-Technique Comparative Analysis. Renewable Energy, 121787. 
https://doi.org/10.1016/j.renene.2024.121787 

[7] Ünsal, Ö., Demir, G., Karakuş, C. B., & Pamučar, D. (2024). Application of Z-number based fuzzy MCDM in solar 
power plant location selection problem in Spatial planning. Energy Reports, 12, 4034-4054. 
https://doi.org/10.1016/j.egyr.2024.09.055 

[8] Hosouli, S., & Hassani, R. A. (2024). Application of multi-criteria decision making (MCDM) model for solar plant 
location selection. Results in Engineering, 24, 103162. https://doi.org/10.1016/j.rineng.2024.103162 

[9] Wang, C. -N., Nguyen, V. T., Thai, H. T. N., & Duong, D. H. (2018). Multi-Criteria Decision Making (MCDM) 
Approaches for Solar Power Plant Location Selection in Viet Nam. Energies, 11(6), 1504. 
https://doi.org/10.3390/en11061504 

[10] Deveci, M., Cali, U., & Pamučar, D. (2021). Evaluation of criteria for site selection of solar photovoltaic (PV) 
projects using fuzzy logarithmic additive estimation of weight coefficients. Energy Reports, 7, 8805-8824. 
https://doi.org/10.1016/j.egyr.2021.10.104 

[11] Saraji, M. K., Streimikiene, D., & Suresh, V. (2024). A novel two-stage multicriteria decision-making approach 
for selecting solar farm sites: A case study. Journal of Cleaner Production, 444, 141198. 
https://doi.org/10.1016/j.jclepro.2024.141198 

[12] Nasution, M. K., Elveny, M., Pamučar, D., Popovic, M., & Gušavac, B. A. (2024). Uncovering the Hidden Insights 
of the Government AI Readiness Index: Application of Fuzzy LMAW and Schweizer-Sklar Weighted Framework. 
Decision Making: Applications in Management and Engineering, 7(2), 443-468. 
https://doi.org/10.31181/dmame7220241221 

https://doi.org/10.1016/j.egyr.2023.12.018
https://doi.org/10.1016/j.rser.2024.114830
https://doi.org/10.1016/j.oceaneng.2024.117521
https://doi.org/10.1016/j.engappai.2023.107253
https://doi.org/10.1016/j.ijleo.2023.171492
https://doi.org/10.1016/j.renene.2024.121787
https://doi.org/10.1016/j.egyr.2024.09.055
https://doi.org/10.1016/j.rineng.2024.103162
https://doi.org/10.3390/en11061504
https://doi.org/10.1016/j.egyr.2021.10.104
https://doi.org/10.1016/j.jclepro.2024.141198
https://doi.org/10.31181/dmame7220241221


Journal of Intelligent Decision Making and Information Science 

Volume 1, (2024) 65-94 

93 
 
 

 

[13] Karakuş, C. B. (2024). Assessment of ecotourism potentiality based on GIS-based fuzzy logarithm methodology 
of additive weights (F-LMAW) method for sustainable natural resource management. Environment, 
Development and Sustainability, 26(10), 27001-27055. https://doi.org/10.1007/s10668-024-05283-0 

[14] Ecer, F., Haseli, G., Krishankumar, R., & Hajiaghaei-Keshteli, M. (2024). Evaluation of sustainable cold chain 
suppliers using a combined multi-criteria group decision-making framework under fuzzy ZE-numbers. Expert 
Systems with Applications, 245, 123063. https://doi.org/10.1016/j.eswa.2023.123063 

[15] Puška, A., Štilić, A., Pamučar, D., Simic, V., & Petrović, N. (2024). Optimal selection of healthcare waste 

treatment devices using fuzzy-rough approach. Environmental Science and Pollution Research, 1-20. 

https://doi.org/10.1007/s11356-024-32630-5 

[16] Haseli, G., Deveci, M., Isik, M., Gokasar, I., Pamučar, D., & Hajiaghaei-Keshteli, M. (2024). Providing climate 
change resilient land-use transport projects with green finance using Z extended numbers based decision-
making model. Expert Systems with Applications, 243, 122858. https://doi.org/10.1016/j.eswa.2023.122858 

[17] Puška, A., Štilić, A., Pamučar, D., Božanić, D., & Nedeljković, M. (2024). Introducing a Novel multi-criteria 
Ranking of Alternatives with Weights of Criterion (RAWEC) model. MethodsX, 102628. 
https://doi.org/10.1016/j.mex.2024.102628 

[18] Yalçın, G. C., Kara, K., & Senapati, T. (2024). A hybrid spherical fuzzy logarithmic decomposition of criteria 
importance and alternative ranking technique based on Adaptive Standardized Intervals model with 
application. Decision Analytics Journal, 11, 100441. https://doi.org/10.1016/j.dajour.2024.100441 

[19] Pamučar, D., Simic, V., Görçün, Ö. F., & Küçükönder, H. (2024). Selection of the best Big Data platform using 
COBRAC-ARTASI methodology with adaptive standardized intervals. Expert Systems with Applications, 239, 
122312. https://doi.org/10.1016/j.eswa.2023.122312 

[20] Kara, K., Yalçın, G. C., Kaygısız, E. G., Simic, V., Örnek, A. Ş., & Pamučar, D. (2024). A Picture Fuzzy CIMAS-
ARTASI Model for Website Performance Analysis in Human Resource Management. Applied Soft Computing, 
111826. https://doi.org/10.1016/j.asoc.2024.111826 

[21] https://www.gnssolar.com/icerik/860/turkiye-gunes-haritasi (Access: 01.12.2024). 

[22] Zadeh, L. A. (1965). Fuzzy sets. Information and Control. 8(3), 338-353. https://doi.org/10.1016/S0019-

9958(65)90241-X 

[23] Pamučar, D., Deveci, M., Canıtez F., Bozanic. D. (2020). A fuzzy Full Consistency Method-Dombi-Bonferroni 

model for prioritizing transportation demand management measures. Applied Soft Computing, 87, 105952.  

https://doi.org/10.1016/j.asoc.2019.105952 

[24] Pamučar, D., Žižović, M., Biswas, S., & Božanić, D. (2021). A new logarithm methodology of additive weights 
(LMAW) for multi-criteria decision-making: Application in logistics. Facta Universitatis, Series: Mechanical 
Engineering, 19(3), 361-380. https://doi.org/10.22190/FUME210214031P 

[25] Božanić, D., Pamučar, D., Milić, A., Marinković, D., & Komazec, N. (2022). Modification of the logarithm 
methodology of additive weights (LMAW) by a triangular fuzzy number and its application in multi-criteria 
decision making. Axioms, 11(3), 89. https://doi.org/10.3390/axioms11030089 

[26] https://gepa.enerji.gov.tr/pages/58.aspx (Access: 01.12.2024). 

[27] Yazdani, M., Zarate, P., Kazimieras Zavadskas, E. & Turskis, Z. (2019). A combined compromise solution 

(CoCoSo) method for multi-criteria decision-making problems.  Management Decision, 57(9), 2501-2519. 

https://doi.org/10.1108/MD-05-2017-0458 

https://doi.org/10.1007/s10668-024-05283-0
https://doi.org/10.1016/j.eswa.2023.123063
https://doi.org/10.1007/s11356-024-32630-5
https://doi.org/10.1016/j.eswa.2023.122858
https://doi.org/10.1016/j.mex.2024.102628
https://doi.org/10.1016/j.dajour.2024.100441
https://doi.org/10.1016/j.eswa.2023.122312
https://doi.org/10.1016/j.asoc.2024.111826
https://www.gnssolar.com/icerik/860/turkiye-gunes-haritasi
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.asoc.2019.105952
https://doi.org/10.22190/FUME210214031P
https://doi.org/10.3390/axioms11030089
https://gepa.enerji.gov.tr/pages/58.aspx
https://doi.org/10.1108/MD-05-2017-0458


Journal of Intelligent Decision Making and Information Science 

Volume 1, (2024) 65-94 

94 
 
 

 

[28] Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. CRC press. 

[29] Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of Weighted Aggregated 

Sum Product Assessment. Elektronika Ir Elektrotechnika, 122(6), 3-6. 

https://doi.org/10.5755/j01.eee.122.6.1810 

[30] Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare 

industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise 

solution (MARCOS). Computers & industrial engineering, 140, 106231. 

https://doi.org/10.1016/j.cie.2019.106231 

 

https://doi.org/10.5755/j01.eee.122.6.1810
https://doi.org/10.1016/j.cie.2019.106231

